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NONNEGATIVE WEIGHTED #CSP: AN EFFECTIVE
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Abstract. We prove a complexity dichotomy theorem for counting constraint satisfaction prob-
lems (#CSPs) with nonnegative and algebraic weights. This caps a long series of important results
on counting problems including counting unweighted and weighted graph homomorphisms and the
celebrated dichotomy theorem for unweighted #CSPs. Our dichotomy theorem gives a succinct cri-
terion for tractability. If a set F of constraint functions satisfies this criterion, then the problem
#CSP(F) defined by F is solvable in polynomial time; if F does not satisfy this criterion, then
the problem is #P-hard. Furthermore, we show that the question of whether a given F satisfies
the criterion or not is decidable in NP. Surprisingly, our tractability criterion is simpler than the
previous criteria for the more restricted classes of counting problems, although when specialized to
those classes, they are logically equivalent. Our proof mainly uses linear algebra and represents a
departure from universal algebra, the dominant methodology in recent years for the study of #CSPs
on large domains.
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1. Introduction. The investigation of constraint satisfaction problems (CSPs)
has been one of the most active research areas in which significant progress has
been made in recent years. The study of CSPs includes at least the following major
branches: decision problems—determining whether a solution exists [42, 32, 6, 37];
optimization problems—finding a solution that satisfies the most constraints (or in
the weighted case, achieving the highest total weight) [31, 36, 1, 24, 40, 44, 41]; and
counting problems—computing the number of solutions (or the partition function in
the weighted case) [8, 7, 10, 3, 27]. The decision CSP dichotomy conjecture of Feder
and Vardi [28], that every decision CSP defined by a constraint language is either in P
or NP-complete, remains open. Much work has been devoted to the optimization ver-
sion of CSP, constituting a significant fraction of ongoing activities in approximation
algorithms.

The subject of this paper is on counting CSPs (#CSPs), more precisely, on
weighted #CSPs. For unweighted #CSPs, the problem is stated as follows: D is
a fixed finite set called the domain set; Γ = {Θ1, . . . ,Θh} is a fixed finite set of con-
straint predicates, where each Θi is a relation on Dri of some finite arity ri ≥ 1. An
instance of #CSP(Γ) consists of a finite set of n variables, each ranging over D, and
a finite sequence of constraints from Γ, each applied to a sequence of these variables.
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It defines a new n-ary relation R ⊆ Dn, where an assignment (x1, . . . , xn) ∈ Dn of
the variables is in R if and only if all the constraints are satisfied. The #CSP asks
for the size of R.

In a (nonnegatively) weighted #CSP, the set Γ is replaced by a fixed finite set
of constraint functions F = {f1, . . . , fh} in which each fi maps Dri to nonnegative
and algebraic reals R+.

1 An instance of #CSP(F) similarly consists of n variables,
ranging over D, as well as a finite sequence of constraint functions from F , each
applied over a sequence of these variables. It then defines an n-ary function F : for
each assignment (x1, . . . , xn) ∈ Dn of the variables, F (x1, . . . , xn) is the product of
the constraint function evaluations. The output is the so-called partition function,
that is, the sum of F over all (x1, . . . , xn) ∈ Dn. The unweighted #CSP is the special
case where all functions in F are {0, 1}-valued. (Formal definitions can be found in
section 2.)

Regarding unweighted #CSPs, Bulatov [7] proved a sweeping dichotomy theorem.
He introduced a criterion called congruence singularity and showed that for any finite
set Γ of predicates over any finite domainD, if Γ satisfies this criterion, then #CSP(Γ)
is solvable in P; otherwise it is #P-complete. His proof uses deep structural theorems
from universal algebra [11, 33, 29]. Indeed this approach using universal algebra has
been one of the most exciting developments in the study of CSPs in recent years—first
used in decision CSPs [34, 35, 6, 5]—and has been called the algebraic approach.

However, this is not the only approach. Later in [27] Dyer and Richerby obtained
an alternative proof of the dichotomy theorem for unweighted #CSPs. Their proof
is considerably more direct and uses no universal algebra other than the notion of a
Mal’tsev polymorphism. Furthermore, they showed that the dichotomy is decidable in
NP [27]. By treating rational weights as integral multiples of a common denominator,
the dichotomy can also be extended to include nonnegative rational weights [3].

In this paper we present a complexity dichotomy theorem for all weighted #CSPs
with nonnegative and algebraic weights. To describe our approach, we briefly review
the proofs by Bulatov and by Dyer and Richerby for unweighted #CSP(Γ). Bulatov’s
proof is deeply embedded in a structural theory of universal algebra called tame con-
gruence theory [33]. A congruence here is an equivalence relation expressible in a
given universal algebra. The starting point of this algebraic approach is the real-
ization of a close connection between unweighted #CSP(Γ) and the relational clone
〈Γ〉 generated by Γ. 〈Γ〉 is the closure set of all relations expressible from Γ by
the Boolean conjunction ∧ and the existential quantifier ∃. A basic property called
congruence permutability is shown to be a necessary condition for the tractability of
#CSP(Γ) [9, 8, 10]. It is also known from universal algebra that congruence per-
mutability is equivalent to the existence of Mal’tsev polymorphisms, which is then
equivalent to the more combinatorial condition of strong rectangularity of Dyer and
Richerby [27]. Recall that Γ is strongly rectangular if for every n-ary relation R de-
fined by an instance of #CSP(Γ) and every pair of positive integers k and � with
k+ � ≤ n, the following |D|k ×|D|� {0, 1}-matrix M is block-diagonal after separately
permuting its rows and columns: The rows of M are indexed by tuples u ∈ Dk, the
columns are indexed by v ∈ D�, and M(u,v) = 1 if there exists a tuple w ∈ Dn−k−�

such that their concatenation (u,v,w) is in R; otherwise, we have M(u,v) = 0. (See
the formal definition in section 2.)

1For convenience, we use R to denote the set of algebraic real numbers and R+ to denote the set
of nonnegative and algebraic numbers (though most of our definitions and lemmas apply to general
real numbers when computation is not involved).
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Assuming Γ satisfies this necessary condition (otherwise #CSP(Γ) is already #P-
hard), Bulatov’s proof delves much more deeply than Mal’tsev polymorphisms and
uses many more results and techniques from universal algebra. The Dyer–Richerby
proof, on the other hand, manages to avoid much of universal algebra. They went on
to give a more combinatorial criterion, called strong balance: For every n-ary relation
R defined by an instance of #CSP(Γ) and every triple of integers k, � ≥ 1 and t ≥ 0,
with k+�+ t ≤ n, the following |D|k×|D|� integer matrix M must be block-diagonal,
and all of its blocks are of rank 1 (which we will refer to as a block-rank-1 matrix):

(1.1) M(u,v) =
∣∣∣{w ∈ Dt : ∃ z ∈ Dn−k−�−t such that (u,v,w, z) ∈ R

}∣∣∣.
(See the formal definition in section 9.) Dyer and Richerby showed in [27] that strong
balance (which implies strong rectangularity) is a criterion that leads to a dichotomy
theorem for the complexity of #CSP(Γ). They indeed proved that it is equivalent to
Bulatov’s congruence singularity which is stated in the language of universal algebra.

The first difficulty we encountered when trying to extend the unweighted dicho-
tomy to weighted #CSP(F) with nonnegative and algebraic weights is that there is
no direct extension of the notion of strong balance in the weighted setting. Although
the number of w that satisfies R on the right side of (1.1) can be naturally replaced
by the sum of F (the function defined by a #CSP(F) instance) over w, there seems
to be no easy way to introduce existential quantifiers to the more general weighted
setting. Moreover, the use of existential quantifiers in the notion of strong balance
is crucial to the proof of Dyer and Richerby [27]: Their polynomial-time counting
algorithm for #CSP(Γ) with a strongly balanced Γ heavily relies on them.

A key observation that allows us to overcome this difficulty is that the notion
of strong balance is equivalent to the notion of balance without using any existen-
tial quantifiers (that is, we only consider partitions of the variables into three parts
with no z). We include the proof of this equivalence in section 9, which inspires us
to use the following seemingly weaker notion of balance for weighted #CSP(F), with
no existential quantifiers at all: For any n-ary function F defined by a #CSP(F)
instance and every pair of k, � ≥ 1 with k + � ≤ n, the following |D|k × |D|� matrix
M must be block-rank-1:

M(u,v) =
∑

w∈Dn−k−�

F (u,v,w) for all u ∈ Dk and v ∈ D�.

It is not very difficult to show that #CSP(F) is #P-hard when F is not balanced.
But is the condition of F being balanced sufficient for the tractability of #CSP(F)?
We show that this is the case by obtaining a polynomial-time algorithm for #CSP(F)
when F is balanced. Our algorithm works differently from that of Dyer and Richerby,
in that it avoids the use of existential quantifiers and is designed specially for weighted
#CSP(F) with a balanced F . As a result, we get the following dichotomy for weighted
#CSP with a logically simpler tractability criterion.

Theorem 1.1. For any language F with nonnegative and algebraic weights, the
problem #CSP(F) is in polynomial time if F is balanced, and is #P-hard otherwise.

Theorem 1.1 follows as a corollary of an alternative dichotomy theorem for #CSP
with nonnegative and algebraic weights. Given F = {f1, . . . , fh}, we define its corres-
ponding unweighted constraint language as Γ = {Θ1, . . . ,Θh}, in which x ∈ Θi if
and only if fi(x) > 0. We introduce in section 3 a criterion called weak balance,
which by name is (similar to but) weaker than that of balance, and prove the following
dichotomy theorem from which Theorem 1.1 follows (see section 3).
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Theorem 1.2. For any language F with nonnegative and algebraic weights, the
problem #CSP(F) is in polynomial time if its corresponding unweighted language Γ is
strongly rectangular and F is weakly balanced, and is #P-hard otherwise.

While both theorems are complexity dichotomies of #CSPs with nonnegative and
algebraic weights, and thus, the tractability criteria must be equivalent, assuming that
#P 
= FP, at this moment we are not aware of an unconditional proof of their equiva-
lence. The language F being balanced implies trivially both the strong rectangularity
of Γ and the weak balance of F , but the converse direction remains an open problem.

A new ingredient in the algorithmic part of Theorem 1.2 is the concept of a vector
representation for a nonnegative function F . Given a nonnegative function F over n
variables, we say s1, . . . , sn : D → R+ is a vector representation of F if

F (x1, . . . , xn) = s1(x1)× · · · × sn(xn)

for all (x1, . . . , xn) ∈ Dn with F (x1, . . . , xn) > 0.
The first step of our algorithm is to show that, given any instance of #CSP(F),

where F satisfies conditions of Theorem 1.2, we can compute a vector representation
of the function F it defines in polynomial time. However, F in general may have a lot
of “holes” x where s1(x1), . . . , sn(xn) > 0 but F (x1, . . . , xn) = 0, so it is still not clear
how to do the sum of F over x1, . . . , xn ∈ D.

The next step is quite a surprise. When F satisfies conditions of Theorem 1.2 we
show how to compute efficiently a sequence of functions t2, . . . , tn : D → R+ in poly-
nomial time such that for any (u1, . . . , un) ∈ Dn with F (u1, . . . , un) > 0,

(1.2)
∑

x2,...,xn∈D

F (u1, x2, . . . , xn) = s1(u1) ·
n∏

j=2

sj(uj)

tj(uj)
.

The intriguing part of (1.2) is that its left side depends only on u1, but (1.2) holds for
any tuple (u1, . . . , un) ∈ Dn as long as F (u1, . . . , un) > 0. A crucial ingredient we use
in computing t2, . . . , tn and proving (1.2) is the succinct data structure called a frame
introduced by Dyer and Richerby for unweighted #CSP [27] (which is similar to the
“compact representation” of Bulatov and Dalmau [2]). Once we obtain t2, . . . , tn and
(1.2), computing the partition function becomes trivial.

After obtaining Theorem 1.2 (and using it to prove Theorem 1.1), we also show
in section 6 that the tractability criterion of Theorem 1.2, i.e.,

whether Γ is strongly rectangular and F is weakly balanced,

is decidable in NP. The proof follows the approach of Dyer and Richerby [27] for
unweighted #CSP, with new ideas and constructions developed for the weighted set-
ting. It is worth pointing out that the decidability proof takes great advantage of
the weaker notion of weak balance, which is the reason we introduce it and include
Theorem 1.2 (instead of proving directly the much cleaner Theorem 1.1, based on the
notion of balance). Given the lack of an unconditional proof of their equivalence, it
remains an open problem whether the criterion of balance is decidable in NP as well.

This advance, from unweighted to nonnegatively weighted #CSP, is akin to the
leap from the Dyer–Greenhill result on counting 0-1 graph homomorphisms [26] to the
Bulatov–Grohe result for the nonnegative case [4]. The Bulatov–Grohe result paved
the way for all future developments. This is because their dichotomy theorem not only
is intrinsically important and sweeping but also gives an elegant tractability criterion,
which allows many of its easy applications. Almost all future results in this area
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use the Bulatov–Grohe criterion. Our dichotomy in this paper covers nonnegatively
weighted #CSP, which achieves a similar leap from the 0-1 case of Bulatov and Dyer
and Richerby and, in the meanwhile, simplifies their tractability criteria. Therefore,
it is hoped that it will also be useful for future research.

In hindsight, perhaps one may re-evaluate the algebraic approach. We now know
that there is another algebraic approach, based mainly on matrix algebra rather than
(relational) universal algebra, which gives us a more direct and complete dichotomy
theorem for #CSP. It is perhaps also a case where the proper generalization, namely
weighted #CSP, leads to a simpler resolution of the problem than the original form
of unweighted #CSP.

Several special cases of weighted #CSP have been studied intensively in the liter-
ature. In particular, counting graph homomorphisms can be viewed as a special case
where F contains a single binary constraint function. There have been great advances
made on graph homomorphisms [26, 4, 25, 12], and our dichotomy theorem generalizes
all previous dichotomy theorems where the constraint function is nonnegative.

Looking beyond nonnegatively weighted counting problems, in graph homomor-
phisms, great progress [30, 15, 43] has already been made. The success has also
been extended to #CSPs recently in [13], which gives a complexity dichotomy theo-
rem for all #CSPs with complex and algebraic weights, after a preliminary version of
the current paper appeared as [14] in 2011. Compared to [13], the dichotomy of this
paper is weaker as it only covers #CSPs with nonnegative weights. However, we be-
lieve that the approach and techniques of our dichotomy in the current paper are still
of interest because the tractability criterion is conceptually much simpler than that
of [13]; for the latter, it remains an open problem whether its tractability criterion is
decidable or not. Ideas behind the NP decidability proof of the current paper as well
as that of [27] may help in this direction.

Going beyond #CSP-type problems, holographic algorithms and reductions are
aimed precisely at counting problems where cancellation is the main feature [45].
Works on Holant problems as well as their dichotomy theorems are the beginning steps
in that direction [20, 21, 19]. Holant problems can be thought of as sum-of-product
computations on graphs where edges are variables and vertices are constraints. A re-
presentative example is counting Perfect Matchings. #CSPs are Holant problems
where the set of Equality constraint functions (of all arities) is implicitly present,
namely, #CSP(F) is the same as Holant(F ∪ EQ), where EQ = {=k | k ≥ 1}. Conse-
quently, a complexity dichotomy for Holant problems would imply a corresponding di-
chotomy for #CSPs. Some progress in classifying Holant problems has been made, but
most of the results are for constraint functions over the Boolean domain [22, 17, 16].
For the general domain D, there are only a few dichotomies for Holant problems
where the constraint functions are required to be quite restricted [23, 18]. While
these Holant dichotomies apply to complex-valued constraint functions, they are in-
comparable with results of the current paper because the Holant problems are more
restrictive than #CSPs.

2. Preliminaries. For m ≥ 1, we write [m] to denote {1, . . . ,m}. We start with
some definitions about nonnegative matrices. We say a nonnegative m×n matrix M
is rectangular if one can permute its rows and columns separately so that it becomes a
block-diagonal matrix. Equivalently, M is rectangular if there exist s pairwise disjoint
and nonempty subsets A1, . . . , As of [m], and s pairwise disjoint and nonempty subsets
B1, . . . , Bs of [n], for some s ≥ 0, such that for all i ∈ [m], j ∈ [n],

M(i, j) > 0 ⇐⇒ i ∈ Ak and j ∈ Bk for some k ∈ [s].
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Given a nonnegative and rectangular matrix M with s blocks A1 ×B1, . . . , As ×Bs,
we say it is block-rank-1 if, in addition, each Ak ×Bk submatrix of M is of rank 1.

The two lemmas below follow directly from the definitions in the previous para-
graph.

Lemma 2.1. Let M be a block-rank-1 matrix with s ≥ 1 blocks: A1×B1, . . . , As×
Bs. If i∗ ∈ Ak and j∗ ∈ Bk for some k ∈ [s], then for any i ∈ Ak we have

∑
j∈Bk

M(i, j)∑
j∈Bk

M(i∗, j)
=

M(i, j∗)
M(i∗, j∗)

.

Lemma 2.2. Let M be an m × n nonnegative matrix. If M is not block-rank-1,
then MMT (which is a symmetric, nonnegative m×m matrix ) is not block-rank-1.

Proof. As M is not block-rank-1, it must have two rows that are neither linearly
dependent nor orthogonal. Let M(i, ∗) and M(j, ∗) be such rows, i, j ∈ [m]. Then

0 <
〈
M(i, ∗),M(j, ∗)〉2 <

〈
M(i, ∗),M(i, ∗)〉 · 〈M(j, ∗),M(j, ∗)〉.

Let A = MMT . We have Ai,i, Ai,j = Aj,i, Aj,j > 0, but Ai,i ·Aj,j > Ai,j ·Aj,i. There-
fore, A is not block-rank-1.

2.1. Counting graph homomorphisms. Each symmetric, nonnegative n× n
matrix A defines a graph homomorphism (or partition) function ZA(·) as follows:
Given any undirected graph G = (V,E), we have

ZA(G)
def
=

∑
ξ:V→[n]

∏
uv∈E

A
(
ξ(u), ξ(v)

)
.

We need the following important result of Bulatov and Grohe [4] in the hardness part
of our dichotomy theorem.

Theorem 2.3. Let A be a symmetric, nonnegative matrix with algebraic entries.
Then the problem of computing ZA(·) is in polynomial time if A is block-rank-1, and
is #P-hard otherwise.

2.2. Weighted #CSPs. Let D = {1, . . . , d} be the domain set, where the size d
will be considered as a constant. A weighted constraint language F over the domain D
is a finite set of functions {f1, . . . , fh} for some h ≥ 1 in which each fi : D

ri → R is
an ri-ary function over D for some ri ≥ 1. The arity ri of fi, i ∈ [h], the number h of
functions in F , as well as the values of fi will all be considered as constants (except
in section 6, where we study the decidability of the dichotomy). In this paper we only
consider nonnegative weighted constraint languages F in which every fi maps Dri to
nonnegative and algebraic numbers.

The pair (D,F) defines the following problem, which we denote by #CSP(F):
1. An instance of #CSP(F) is a pair (n, I), where n is the number of variables

(indexed by [n]) and I is a sequence (or multiset) of m tuples (f, i1, . . . , ir).
For each (f, i1, . . . , ir) in I, f is an r-ary function from F and is applied on
variables indexed by i1, . . . , ir ∈ [n]. We call n+m the size of (n, I).

2. Given an input instance (n, I), we define the following n-variable function FI

over Dn: For each assignment x = (x1, . . . , xn) ∈ Dn,

FI(x)
def
=

∏
(f,i1,...,ir)∈I

f(xi1 , . . . , xir ),
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and the output of the problem is the sum

Z(I)
def
=

∑
x∈Dn

FI(x).

2.3. Reduction from unweighted to weighted #CSPs. A special case of
#CSP(F) is when every function in F is {0, 1}-valued. In this case we can view each
function as a relation. We use the following notation for this special case.

An unweighted constraint language Γ over the domain D is a finite set of relations
{Θ1, . . . ,Θh} for some h ≥ 1 in which each Θi is an ri-ary relation over Dri for some
ri ≥ 1. The pair (D,Γ) defines the following problem denoted by #CSP(Γ):

1. An instance of #CSP(Γ) is a pair (n, I), where n is the number of variables
(indexed by [n]) and I is a sequence (or multiset) of m tuples (Θ, i1, . . . , ir).
For each tuple in I, Θ is an r-ary relation in Γ and applied on variables
indexed by i1, . . . , ir ∈ [n]. We call n+m the size of (n, I).

2. Given an input instance (n, I), we define the following n-ary relation RI over
Dn: x = (x1, . . . , xn) ∈ Dn is in RI if and only if we have (xi1 , . . . , xir ) ∈ Θ
for every tuple (Θ, i1, . . . , ir) ∈ I. Further, the output is the number of
x ∈ Dn in RI .

Given a nonnegative weighted constraint language F = {f1, . . . , fh}, it is natural
to define its corresponding unweighted constraint language Γ = {Θ1, . . . ,Θh}, where
x ∈ Θi if and only if fi(x) > 0 for all i ∈ [h] and x ∈ Dri . In section 7, we present a
polynomial-time reduction from #CSP(Γ) to #CSP(F).

Lemma 2.4. Problem #CSP(Γ) is polynomial-time reducible to #CSP(F).

2.4. Strong rectangularity. In the dichotomy theorem for unweighted #CSPs
[7, 27], the following condition, called strong rectangularity, played a crucial role.

Definition 2.5 (strong rectangularity). We say an unweighted constraint lan-
guage Γ over the domain set D is strongly rectangular if, for any input instance (n, I)
of #CSP(Γ) which defines an n-ary relation RI over Dn and for any integers a and b
such that 1 ≤ a < b ≤ n, the following da × db−a matrix M is rectangular: The rows
of M are indexed by u ∈ Da, the columns of M are indexed by v ∈ Db−a, and

M(u,v) =
∣∣∣{w ∈ Dn−b : (u,v,w) ∈ RI

}∣∣∣ for all u ∈ Da,v ∈ Db−a.

For the special case when b = n, M(u,v) = 1 if (u,v) ∈ RI , and 0 otherwise.

The following theorem is proved in [7] and [27].

Theorem 2.6. If Γ is not strongly rectangular, then #CSP(Γ) is #P-hard.

Let F be a nonnegative constraint language, and let Γ be its corresponding un-
weighted language. By Lemma 2.4 and Theorem 2.6, #CSP(F) is #P-hard if Γ is not
strongly rectangular. When Γ is strongly rectangular, we can use the following algo-
rithmic results for #CSP(Γ) from [27] (using the succinct and efficiently computable
data structure called a frame), in the quest of obtaining a polynomial-time algorithm
for the original weighted problem #CSP(F). We start with some notation. Let (n, I)
be an input instance of #CSP(Γ) which defines a relation R over Dn.

Definition 2.7. We use priR ⊆ D, i ∈ [n], to denote the projection of R on the
ith coordinate: a ∈ priR if and only if there exist u ∈ Di−1 and v ∈ Dn−i such that
(u, a,v) ∈ R. We define the following relation ∼i on priR: a ∼i b if there exist tuples
u ∈ Di−1 and va,vb ∈ Dn−i such that (u, a,va) ∈ R and (u, b,vb) ∈ R.
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2184 JIN-YI CAI, XI CHEN, AND PINYAN LU

Lemma 2.8 (see [27]). If Γ is strongly rectangular, then for any input instance
(n, I) of #CSP(Γ) which defines an n-ary relation R over Dn, we have the following:

(A) For each i ∈ [n], we can compute the set priR in polynomial time in the size
of (n, I). Moreover, for every a ∈ priR, we can find a tuple u ∈ R such that
ui = a in polynomial time.

(B) For each i ∈ [n], the relation ∼i must be an equivalence relation and can
be computed in polynomial time in the size of (n, I). We will use Ei,k ⊆ D,
k = 1, . . . , to denote the equivalence classes of ∼i.

(C) For each equivalence class Ei,k, we can find in polynomial time a tuple u[i,k] ∈
Di−1 and a tuple v[i,k,a] ∈ Dn−i for each element a ∈ Ei,k such that (u[i,k], a,
v[i,k,a]) ∈ R for every a ∈ Ei,k.

3. A dichotomy theorem for nonnegatively weighted #CSPs and its
decidability. We state our dichotomy theorems in this section. The lemmas used in
their proofs are proved in the rest of the paper.

In our dichotomy theorems the following two notions of weak balance and balance
play a crucial role. They are similar to, and in some sense weaker than, the notion of
strong balance used in [27] (no existential quantifier is used in the definitions).

Definition 3.1 (weak balance). We say a nonnegatively weighted language F
over the domain set D is weakly balanced if for any input instance (n, I) of #CSP(F)
which defines a nonnegative and algebraic function F (x1, . . . , xn) over Dn and any
integer a : 1 ≤ a < n, the following da × d matrix M is block-rank-1: The rows of M
are indexed by tuples u ∈ Da, the columns of M are indexed by v ∈ D, and

M(u, v) =
∑

w∈Dn−a−1

F (u, v,w) for all u ∈ Da and v ∈ D.

For the special case when a+ 1 = n, we have M(u, v) = F (u, v) is block-rank-1.

Definition 3.2 (balance). We say F is balanced if for any input instance (n, I)
of #CSP(F) which defines a nonnegative and algebraic function F (x1, . . . , xn) over
Dn and any a, b : 1 ≤ a < b ≤ n, the following da × db−a matrix M is block-rank-1:
The rows of M are indexed by u ∈ Da, the columns are indexed by v ∈ Db−a, and

M(u,v) =
∑

w∈Dn−b

F (u,v,w) for all u ∈ Da and v ∈ Db−a.

For the special case when b = n, we have M(u,v) = F (u,v) is block-rank-1.

It is clear that balance implies weak balance. We prove the following complexity
dichotomy theorem on nonnegatively weighted #CSPs.

Theorem 3.3. For any constraint language F with nonnegative and algebraic
weights, #CSP(F) is in polynomial time if its corresponding unweighted language Γ
is strongly rectangular and F is weakly balanced, and it is #P-hard otherwise.

Proof. Combining Lemma 2.4 and Theorem 2.6, #CSP(F) is #P-hard if Γ is not
strongly rectangular, where Γ is the unweighted constraint language that corresponds
to F . We prove the following hardness lemma in section 8, showing that #CSP(F)
is #P-hard if F is not balanced.

Lemma 3.4. If F is not balanced, then #CSP(F) is #P-hard.

As balance implies weak balance, #CSP(F) must be #P-hard if F is not weakly
balanced. This finishes the proof of the hardness part of the theorem. In the next two
sections (sections 4 and 5) we focus on the proof of the following algorithmic lemma.
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Lemma 3.5. If Γ is strongly rectangular and F is weakly balanced, then #CSP(F)
can be solved in polynomial time.

This finishes the proof of the dichotomy theorem.

We can use Lemmas 3.4 and 3.5 to obtain the following dichotomy theorem that
uses the notion of balance only in its dichotomy criterion.

Theorem 3.6. #CSP(F) is in polynomial time if F is balanced; otherwise, it is
#P-hard.

Proof. By Lemma 3.4, #CSP(F) is #P-hard if F is not balanced.
Next it follows from the definitions of strong rectangularity and balance (since a

matrix that is block-rank-1 must first be rectangular) that F is strongly rectangular if
it is balanced. It follows from Lemma 3.5 that #CSP(F) can be solved in polynomial
time if F is balanced. This finishes the proof of the theorem.

Finally, we show that the dichotomy criterion stated in Theorem 3.3 is decidable
in NP. GivenD and F , we are interested in the decision problem of whether F satisfies
the following two conditions: (1) Γ is strongly balanced, and (2) F is weakly balanced.
(Note that here D and F = {f1, . . . , fh} are no longer considered as constants, but as
the input of the decision problem. The input size is |D| plus the number of bits needed
to represent functions f1, . . . , fh in F , each as a table giving its value for each input
tuple. We also follow the standard model of [38] for encoding algebraic numbers.) We
prove the following theorem in section 6. The proof follows the approach of Dyer and
Richerby [27], with some new ideas and constructions developed for the more general
weighted case. It uses a method of Lovász [39], which was also used earlier in [25].

Theorem 3.7. Given D and F , the problem of deciding whether F satisfies the
criterion stated in Theorem 3.3 is in NP.

4. Vector representation. Assume that F is weakly balanced, and let f be an
r-ary function in F . We use Θ to denote the corresponding r-ary relation of f in Γ.
In this section, we show that there must exist r nonnegative, one-variable functions
s1, . . . , sr : D → R+, such that for all x ∈ Dr, either x /∈ Θ and f(x) = 0, or we have
f(x) = s1(x1) · · · sr(xr). We call an s = (s1, . . . , sr) that satisfies the above property
a vector representation of f . We prove the following lemma.

Lemma 4.1. If F is weakly balanced, every f ∈ F has a vector representation.

To this end, we need the following notation. Let f be any r-ary function over D.
Then for any � ∈ [r], we use f [�] to denote the following �-ary function over D:

f [�](x1, . . . , x�)
def
=

∑
x�+1,...,xr∈D

f(x1, . . . , x�, x�+1, . . . , xr) for all x1, . . . , x� ∈ D.

In particular, we have f [r] ≡ f .
Let f be an r-ary, nonnegative function with r ≥ 1. We say f is block-rank-1 if

either r = 1, or the following dr−1 × d matrix M is block-rank-1: The rows of M are
indexed by tuples u ∈ Dr−1, the columns are indexed by v ∈ D, andM(u, v) = f(u, v)
for all u ∈ Dr−1 and v ∈ D.

Using the definition of weak balance, Lemma 4.1 is a corollary of the following
lemma.

Lemma 4.2. Let f(x1, . . . , xr) be an r-ary nonnegative function. If f [�] is block-
rank-1 for every � ∈ [r], then f has a vector representation s.
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Proof. We prove the lemma by induction on r, the arity of f .
The base case when r = 1 is trivial. Now we assume for induction that the claim is

true for all (r − 1)-ary nonnegative functions, for some r ≥ 2, and let f be an r-ary
nonnegative function such that f [�] is block-rank-1 for all � ∈ [r]. By definition,

(
f [r−1]

)[�]

= f [�] for all � ∈ [r − 1].

As a result, if we denote f [r−1], an (r− 1)-ary nonnegative function, by g, then g[�] is
block-rank-1 for all � ∈ [r− 1]. Therefore, by the inductive hypothesis, g = f [r−1] has
a vector representation (s1, . . . , sr−1).

Finally, we show how to construct sr, so that (s1, . . . , sr−1, sr) is a vector repre-
sentation of f . To this end we let M denote the following dr−1 × d matrix: The rows
are indexed by u ∈ Dr−1, the columns are indexed by v ∈ D, and M(u, v) = f(u, v)
for every u ∈ Dr−1 and v ∈ D. By the assumption, we know that M is block-rank-1.
Therefore, by definition, there exist pairwise disjoint and nonempty subsets of Dr−1,
denoted by A1, . . . , As, and pairwise disjoint and nonempty subsets of D, denoted by
B1, . . . , Bs, for some s ≥ 0, such that M(u, v) > 0 if and only if u ∈ Ai and v ∈ Bi

for some i ∈ [s], and for every i ∈ [s], the Ai ×Bi submatrix of M is of rank 1.
We now construct sr : D → R+ as follows. For each i ∈ [s], we arbitrarily pick a

vector from Ai and denote it ui. Then for each v ∈ D, we set sr(v) as follows:
1. If v /∈ Bi for any i ∈ [s], then sr(v) = 0.
2. Otherwise, assume that v ∈ Bi (which must be unique). Then

(4.1) sr(v) =
M(ui, v)∑

v′∈Bi
M(ui, v′)

.

To prove that (s1, . . . , sr) is indeed a vector representation of f , we need only
show that for every tuple (u, v) such that u ∈ Ai and v ∈ Bi for some i ∈ [s] (since
otherwise we have f(u, v) = 0), we have

f(u, v) = M(u, v) = sr(v)
∏

j∈[r−1]

sj(uj).

By using Lemma 2.1 and (4.1), we have

M(u, v) = M(ui, v) ·
∑

v′∈Bi
M(u, v′)∑

v′∈Bi
M(ui, v′)

= sr(v) · f [r−1](u) = sr(v)
∏

j∈[r−1]

sj(uj),

where the last equation follows from the inductive hypothesis that (s1, . . . , sr−1) is a
vector representation of g = f [r−1].

This finishes the induction, and the lemma is proved.

5. Tractability: The counting algorithm. In this section we prove Lemma
3.5 by giving a polynomial-time algorithm for #CSP(F), assuming that Γ is strongly
rectangular and F is weakly balanced. As mentioned earlier, as Γ is strongly rectan-
gular, we can use the three polynomial-time algorithms summarized in Lemma 2.8 as
subroutines. Also, because F is weakly balanced, we may assume, by Lemma 4.1, that
every r-ary function f in F has a vector representation sf = (sf,1, . . . , sf,r), where
sf,i : D → R+ for all i ∈ [r]. (Note that since each f in F is considered as a constant,
we may assume that sf for f is given and is considered as a constant as well.)
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Now let (n, I) be an instance of #CSP(F) and let F denote the function it defines
over x = (x1, . . . , xn) ∈ Dn. For each tuple in I, one can replace the first component,
that is, a function f in F , by its corresponding relation Θ in Γ. We use I ′ to denote
the new set, which is an instance of #CSP(Γ) and defines a relation R over x ∈ Dn (R
is also referred to as the feasibility relation in literature on valued CSPs. We have
F (x) > 0 if and only if x ∈ R for all x ∈ Dn.

Our algorithm starts by computing a vector representation s = (s1, . . . , sn) of F
using the known vector representations sf of each f ∈ F .

Lemma 5.1. Given I, one can compute s1(·), . . . , sn(·) in polynomial time such
that for all x ∈ Dn, either x /∈ R and F (x) = 0, or F (x) = s1(x1) · · · sn(xn).

Proof. We start with s1, . . . , sn, where si(a) = 1 for all i ∈ [n] and a ∈ D. Next
we enumerate the constraints in I one by one. For each constraint (f, i1, . . . , ir) ∈ I
and each j ∈ [r], we update the function sij (·) using sf,j(·) as follows:

sij (a)
set
= sij (a) · sf,j(a) for each a ∈ D.

It is easy to check that the tuple (s1, . . . , sn) we get is a vector representation of F .
This completes the proof.

The second step of the algorithm computes a sequence of one-variable functions
tn(·), tn−1(·), . . . , t2(·) with the following property: For any i ∈ {1, . . . , n− 1} and for
any u ∈ R, we have

∑
xi+1,...,xn∈D

F (u1, . . . , ui, xi+1, . . . , xn)(5.1)

= s1(u1) · · · si(ui) · si+1(ui+1)

ti+1(ui+1)
· · · sn(un)

tn(un)
.

Before describing the algorithm, we show that Z(I) is easy to compute given the ti’s.
For this purpose we first compute pr1R in polynomial time using the algorithm in

Lemma 2.8(A). In addition, we find a vector ua = (ua,1, ua,2, . . . , ua,n) ∈ R for each
a ∈ pr1R such that ua,1 = a in polynomial time. Then we have

Z(I) =
∑

x∈Dn

F (x) =
∑

a∈pr1R

∑
x2,...,xn∈D

F (a, x2, . . . , xn)

=
∑

a∈pr1R

s1(a)
∏

j∈[2:n]

(
sj(ua,j)

tj(ua,j)

)
,

which can be evaluated in polynomial time using s1, . . . , sn and t2, . . . , tn.
We now show how to compute tn, tn−1, . . . , t2 one by one in this order and prove

(5.1) by induction. We start with tn(·).
Because F is weakly balanced, the following dn−1 × d matrix M must be block-

rank-1: The rows are indexed by u ∈ Dn−1, the columns are indexed by v ∈ D, and
M(u, v) = F (u, v) for all u ∈ Dn−1 and v ∈ D. By the definition of ∼n, we have that
v1 ∼n v2 if and only if columns v1 and v2 are in the same block of M, and thus, the
equivalent classes {En,k} are exactly the column index sets of those blocks of M.

We define tn(·) as follows. For each a ∈ D, if a /∈ prnR, then tn(a) = 0; otherwise,
a belongs to one of the equivalence classes En,k of ∼n and

(5.2) tn(a) =
sn(a)∑

b∈En,k
sn(b)

.
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Using the algorithm in Lemma 2.8(B), tn(·) can be computed in polynomial time. We
now prove (5.1) for i = n− 1. Given any u ∈ R, we have un ∈ prnR by definition and
let En,k denote the equivalence class to which un belongs. Then

∑
b∈D

F (u1, . . . , un−1, b) =
∑

b∈En,k

F (u1, . . . , un−1, b)

=
∏

j∈[n−1]

sj(uj)
∑

b∈En,k

sn(b) =
∏

j∈[n−1]

sj(uj) · sn(un)

tn(un)
.

The last equation follows from (5.2) of tn(·) and the assumption that un ∈ En,k.
Next, assume for induction that we have already computed ti+1, . . . , tn, for some

i ∈ [2 : n− 1], and they together satisfy (5.1). To compute ti(·), we first observe that
the following di−1×d matrix M must be block-rank-1, because F is weakly balanced:
The rows are indexed by u = (u1, . . . , ui−1) ∈ Di−1, the columns are indexed by
v ∈ D, and

M(u, v) =
∑

w∈Dn−i

F (u, v,w) =
∑

(u,v,w)∈R

F (u, v,w).

Similarly, by the definition of ∼i, its equivalent classes {Ei,k} are precisely the column
index sets of those blocks of M. Using (5.1) and the inductive hypothesis, we have a
concise form forM(u, v): For anyw = (wi+1, . . . , wn) ∈ Dn−i such that (u, v,w) ∈ R,

(5.3) M(u, v) =

⎛
⎝ ∏

j∈[i−1]

sj(uj)

⎞
⎠ si(v)

⎛
⎝ ∏

j∈[i+1:n]

sj(wj)

tj(wj)

⎞
⎠ .

Note that by (5.1), the choice of w can be arbitrary as long as (u, v,w) ∈ R.
We now define ti(·). For every a ∈ D, the following hold:
1. If a /∈ priR, then ti(a) = 0.
2. Otherwise, let Ei,k denote the equivalence class of ∼i to which a belongs.

Then by using the algorithm in Lemma 2.8(C), we find a tuple u[i,k] ∈ Di−1

and a tuple v[i,k,b] ∈ Dn−i for each b ∈ Ei,k such that

(
u[i,k], b,v[i,k,b]

) ∈ R for all b ∈ Ei,k.

Then we set

(5.4) ti(a) =
M(u[i,k], a)∑

b∈Ei,k
M(u[i,k], b)

.

By (5.3), ti(a) can be computed efficiently using u[i,k],v[i,k,b] for b ∈ Ei,k.
This finishes the definition of ti(·).

Finally we prove (5.1). Let u be any tuple in R, and let Ei,k be the equivalence
class of ∼i to which ui belongs. Then

∑
xi,...,xn

F (u1, . . . , ui−1, xi, . . . , xn) =
∑

b∈Ei,k

∑
xi+1,...,xn

F (u1, . . . , ui−1, b, xi+1, . . . , xn).

Let u∗ denote the (i− 1)-tuple (u1, . . . , ui−1). Then by the definition of M, we have

∑
xi,...,xn∈D

F (u1, . . . , ui−1, xi, . . . , xn) =
∑

b∈Ei,k

M(u∗, b).
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Recall u[i,k] and v[i,k,b], b ∈ Ei,k, which we used earlier in the definition of ti(·). Since
M is block-rank-1 and u∗ and u[i,k] belong to the same block of M, we have

∑
b∈Ei,k

M(u∗, b) =
∑

b∈Ei,k

M(u∗, ui)

M(u[i,k], ui)
·M(u[i,k], b) =

M(u∗, ui)

M(u[i,k], ui)
·
∑

b∈Ei,k

M(u[i,k], b).

However, by the definition (5.4) of ti(·), we have

∑
b∈Ei,k

M(u[i,k], b) =
M(u[i,k], ui)

ti(ui)
,

since we assumed that ui ∈ Ei,k. As a result, we have

∑
xi,...,xn∈D

F (u1, . . . , ui−1, xi, . . . , xn) =
∑

b∈Ei,k

M(u∗, b) =
M(u∗, ui)

ti(ui)

=

⎛
⎝ ∏

j∈[i−1]

sj(uj)

⎞
⎠

⎛
⎝ ∏

j∈[i:n]

sj(uj)

tj(uj)

⎞
⎠ .

The last equation follows from (5.3).
This finishes the description of our algorithm and the proof of Lemma 3.5.

6. Decidability of the dichotomy criterion. In this section we prove Theo-
rem 3.7 by showing that the following decision problem is in NP: Given D and F (see
the discussion on the representation of F at the end of section 3), decide whether Γ
is strongly rectangular and F is weakly balanced. The strong rectangularity part can
be done in NP [7, 27] by nondeterministically guessing a Mal’tsev polymorphism.

Lemma 6.1 (see [7, 27]). Given an unweighted constraint language Γ, the problem
of deciding whether Γ is strongly rectangular is in NP.

Thus in the rest of the section we focus on the decision problem of checking
whether or not F is weakly balanced.

6.1. Primitive balance. First we show that the notion of weak balance is ac-
tually equivalent to the following seemingly weaker notion of primitive balance.

Definition 6.2 (primitive balance).We say F is primitively balanced if for any
instance (n, I) of #CSP(F) which defines an n-ary function FI(x1, . . . , xn) over Dn

the following d×d matrix MI is block-rank-1: The rows of MI are indexed by x1 ∈ D,
the columns are indexed by x2 ∈ D, and

(6.1) MI(x1, x2) =
∑

x3,...,xn∈D

FI(x1, x2, x3, . . . , xn) for all x1, x2 ∈ D.

Clearly weak balance implies primitive balance. We prove the converse direction.

Lemma 6.3. If F is primitively balanced, then it is weakly balanced as well.

Proof. Assume for a contradiction that F is primitively balanced but not weakly
balanced. By definition, this means there exist an instance I over n variables and an
integer a : 1 ≤ a < n such that the following da × d matrix M is not block-rank-1:
The rows of M are indexed by u ∈ Da, the columns are indexed by v ∈ D, and

M(u, v) =
∑

w∈Dn−a−1

FI(u, v,w) for all u ∈ Da and v ∈ D.
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As a result, it follows from Lemma 2.2 that A = MMT is not block-rank-1.
For a contradiction, we construct I ′ from I as follows: I ′ has 2n− a variables in

the order x1, x2, y1, . . . , ya, z1, . . . , zn−a−1, w1, . . . , wn−a−1. The instance I
′ consists of

two parts: a copy of I over (y1, . . . , ya, x1, z1, . . . , zn−a−1) and a copy of I over (y1, . . . ,
ya, x2, w1, . . . , wn−a−1).

Let FI′ be the function that I ′ defines. It gives us the following d×d matrix MI′ :

MI′(x1, x2) =
∑
y∈Da

z,w∈Dn−a−1

FI(y, x1, z) · FI(y, x2,w)

=
∑
y∈Da

M(y, x1) ·M(y, x2) = A(x1, x2),

which is not block-rank-1 and contradicts the assumption that F is primitively bal-
anced. This completes the proof of the lemma.

Given Lemma 6.3, the decision problem reduces to the following:
primitive balance: Given D and F such that Γ is strongly rectangular
(which by Lemma 6.1 can be verified in NP), decide whether F is primitively
balanced or not.

As Γ is strongly rectangular, we know that for any instance I of #CSP(F), the d× d
matrix MI defined in (6.1) is rectangular. We need the following useful lemma from
[27], which can be used to check whether a rectangular matrix is block-rank-1.

Lemma 6.4 (see [27]). A rectangular d×d matrix M is block-rank-1 if and only if

(6.2) M(α, κ)2M(β, λ)2M(α, λ)M(β, κ) = M(α, λ)2M(β, κ)2M(α, κ)M(β, λ)

for all α 
= β ∈ D and κ 
= λ ∈ D.

As a consequence, for primitive balance it suffices to check whether (6.2) holds
for MI over all instances I of #CSP(F) and for all α 
= β, κ 
= λ ∈ D. In the rest of
this section, we fix α 
= β ∈ D and κ 
= λ ∈ D and prove that the decision problem
(i.e., whether (6.2) holds for all I) is in NP. Theorem 3.7 follows directly since there
are only polynomially many possible tuples (α, β, κ, λ) to check.

6.2. Reformulation of the decision problem. Fixing α 
= β ∈ D and κ 
=
λ ∈ D, we follow [27] and reformulate the decision problem primitive balance using
a new pair (D,F), that is, the 6th power of #CSP(F):

1. The new domain D = D6, and we use s = (s1, . . . , s6) to denote an element
in D, where si ∈ D for each i ∈ [6].

2. F = {g1, . . . , gh} has the same number of functions as F , and each gi, i ∈ [h],
has the same arity ri as fi. Function gi : D

ri → R+ is defined explicitly from
fi as follows:

gi(s1, . . . , sri) =
∏
j∈[6]

fi(s1,j , . . . , sri,j) for all s1, . . . , sri ∈ D = D6.

In the rest of the section, we will always use xi to denote variables over D, and yi, zi
to denote variables over D.

An input instance I of #CSP(F) over n variables (x1, . . . , xn) naturally corre-
sponds to an input instance I of (D,F) over n variables (y1, . . . , yn) as follows: For
each tuple (f, i1, . . . , ir) ∈ I, add a tuple (g, i1, . . . , ir) to I, where g ∈ F corresponds
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to f ∈ F . Moreover, this is clearly a bijection between the set of all I and the set of
all I. Similarly, we let G : Dn → R+ denote the n-ary function that I defines:

G(y1, . . . , yn) =
∏

(g,i1,...,ir)∈I

g(yi1 , . . . , yir) for all y1, . . . , yn ∈ D.

We introduce the new pair (D,F) because it gives us a new and much simpler formu-
lation of the decision problem in which we are interested.

To see this, we let a, b, c denote the following three specific elements from D:

a = (α, α, α, β, β, β), b = (κ, κ, λ, λ, λ, κ), c = (λ, λ, κ, κ, κ, λ).

Since α 
= β and κ 
= λ, a, b, c are three distinct elements in D. We adopt the notation
of [27]. For each s ∈ D, let

homs(I)
def
=

∑
y3,...,yn∈D

G(a, s, y3, . . . , yn) for every instance I of (D,F).

It is easy to prove the following two equations. Let I be the instance of (D,F) that
corresponds to I, and let MI be the d× d matrix as defined in (6.1). Then

homb(I) = MI(α, κ)
2MI(β, λ)

2MI(α, λ)MI(β, κ),

homc(I) = MI(α, λ)
2MI(β, κ)

2MI(α, κ)MI(β, λ).

As a result, we have the following reformulation of the decision problem:

MI satisfies (6.2) for all I ⇐⇒ homb(I) = homc(I) for all I.

The next reformulation considers sums over injective tuples only. We say a tuple
(y1, . . . , yn) ∈ Dn is an injective tuple if yi 
= yj for all i 
= j ∈ [n] (or, equivalently, if
we view (y1, . . . , yn) as a map from [n] to D, it is injective). We use Yn to denote the
set of injective n-tuples. (Clearly this definition is only useful when n ≤ |D|; otherwise
Yn is empty.) We now define functions mons(I), which are sums over injective tuples:
For each s ∈ D, let

mons(I)
def
=

∑
(a,s,y3,...,yn)∈Yn

G(a, s, y3, . . . , yn) for every instance I of (D,F).

The following lemma shows that homb(I) = homc(I) for all I if and only if the
same equation holds for the sums over injective tuples. The proof is exactly the same
as that of Lemma 41 in [27], using the Möbius inversion. So we skip it here.

Lemma 6.5 (see [27, Lemma 41]). homb(I) = homc(I) for all I if and only if we
have monb(I) = monc(I) for all I.

Finally, the following reformulation gives a condition that can be checked in NP.

Lemma 6.6. monb(I) = monc(I) for all I if and only if there exists a bijection π
from the domain D to itself (which we will refer to as an automorphism of (D,F))
such that π(a) = π(a), π(b) = π(c), and for every r-ary function g ∈ F,

(6.3) g(y1, . . . , yr) = g
(
π(y1), . . . , π(yr)

)
for all y1, . . . , yr ∈ D.
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Proof. We start with the easier direction: If π exists, then monb(I) = monc(I)
for all I. This is because for any injective n-tuple (a, b, y3, . . . , yn) ∈ Yn, we can apply
π to obtain a new injective n-tuple (a, c, π(y3), . . . , π(yn)) ∈ Yn, and this is a bijection
mapping (a, b, y3, . . . , yn) ∈ Yn to (a, c, z3, . . . , zn) ∈ Yn. Moreover, by (6.3) we have

G(a, b, y3, . . . , yn) = G
(
a, c, π(y3), . . . , π(yn)

)
.

As a result, the two sums monb(I) and monc(I) over injective tuples must be equal.
The other direction is more difficult. First, we prove that if monb(I) = monc(I)

for all I, then for any I and any tuple (a, b, y3, . . . , yn) ∈ Yn with G(a, b, y3, . . . , yn) >
0, there exists a tuple (a, c, z3, . . . , zn) ∈ Yn such that

(6.4) G(a, b, y3, . . . , yn) = G(a, c, z3, . . . , zn).

For this purpose we look at the sequence of instances J1 = J, J2, . . . defined from I,
where Jj consists of exactly j copies of J over the same set of variables. We use Gj

to denote the n-ary function that Jj defines; then

Gj(y1, . . . , yn) =
(
G(y1, . . . , yn)

)j
for all y1, . . . , yn ∈ D.

Let Q = {q1, . . . , q|Q|} denote the set of all possible positive values of G over Yn; let
ki ≥ 0 denote the number of tuples (a, b, y3, . . . , yn) ∈ Yn with G(a, b, y3, . . . , yn) = qi,
i ∈ [|Q|]; and let �i ≥ 0 denote the number of tuples (a, c, y3, . . . , yn) ∈ Yn such that
G(a, c, y3, . . . , yn) = qi, i ∈ [|Q|]. Then by monb(Ij) = monc(Ij), we have

∑
i∈[|Q|]

ki · (qi)j =
∑

i∈[|Q|]
�i · (qi)j for all j ≥ 1.

Viewing ki − �i as variables, the equations form a linear system with a Vandermonde
matrix if we let j go from 1 to |Q|. As a result, we must have ki = �i for all i ∈ [|Q|],
and (6.4) follows.

To finish the proof, we need the following technical lemma.

Lemma 6.7. Let Q be a finite and nonempty set of positive numbers. Then for
any k ≥ 1, there exists a sequence of positive integers N1, . . . , Nk such that

(6.5) qN1
1 qN2

2 · · · qNk

k = (q′1)
N1(q′2)

N2 · · · (q′k)Nk , where q1, . . . , qk, q
′
1 . . . , q

′
k ∈ Q,

if and only if qi = q′i for every i ∈ [k].

Proof. The lemma is trivial if |Q| = 1, so we assume |Q| ≥ 2. We use induction
on k. The basis is trivial: We just set N1 = 1. Now we assume the lemma holds for
some k ≥ 1, and N1, . . . , Nk is the sequence for k. We show how to find Nk+1 so that
N1, . . . , Nk+1 satisfies the lemma for k + 1. To this end, we let

cmin = min
q>q′∈Q

q/q′ > 1 and cmax = max
q>q′∈Q

q/q′.

Then we let Nk+1 be a large enough integer such that

(
cmin

)Nk+1 >
(
cmax

)∑
i∈[k] Ni

.

To prove the correctness we assume (6.5) holds. First we must have qk+1 = q′k+1.
Otherwise, assume without generality that qk+1 > q′k+1; then by (6.5)

(
cmin

)Nk+1 ≤ (
qk+1/q

′
k+1

)Nk+1 =
(
q′1/q1

)N1 · · · (q′k/qk)Nk ≤ (
cmax

)∑
i∈[k] Nk ,
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which contradicts the definition of Nk+1. Once we have qk+1 = q′k+1, they can be
removed from (6.5), and by the inductive hypothesis, we have qi = q′i for all i ∈ [k].
This finishes the induction, and the lemma is proved.

To find π, we define the following I: Let s1, . . . , s|D| be an arbitrary enumeration
of the domain set D, with s1 = a and s2 = b. There are |D| variables in I indexed by
[|D|]. Let L be the set of all tuples (g, i1, . . . , ir) such that g is an r-ary function in F
and g(si1 , . . . , sir) > 0. We let N1, . . . , N|L| be the sequence of positive integers that
satisfies Lemma 6.7 with k = |L| and

Q =
{
g(si1 , . . . , sir ) : (g, i1, . . . , ir) ∈ L

}
.

Then we enumerate all tuples in L in any order. For the ith tuple (g, i1, . . . , ir) ∈ L,
i ∈ [|L|], we add Ni copies of the same tuple (g, i1, . . . , ir) to I, and this finishes the
definition of I.

By the definition of I, we have G(a, b, s3, . . . , s|D|) = G(s1, s2, s3, . . . , s|D|) > 0. So
by (6.4) we know there exists a tuple (ti : i ∈ [|D|]) ∈ Yn such that t1 = a, t2 = c, and

G
(
a, b, s3, . . . , s|D|

)
= G

(
a, c, t3, . . . , t|D|

)
> 0.

Let π be the map from D to D with π(si) = ti for each i ∈ |D|. We show below that π
is the bijection that we are looking for. (Note that π is a bijection because (ti) ∈ Yn,
and thus (ti) must be a permutation of the domain set D.)

First, using Lemma 6.7, it follows from the definition of I that

g
(
si1 , . . . , sir

)
= g

(
π(si1 ), . . . , π(sir )

)
for every tuple (g, i1, . . . , ir) ∈ L.

Hence it suffices to show that g(π(si1), . . . , π(sir )) = 0 when g(si1 , . . . , sir ) = 0. This
follows from the fact that π is a bijection, and thus (si1 , . . . , sir ) → (π(si1), . . . , π(sir ))
is also a bijection.

Given Lemmas 6.5 and 6.6, it suffices to check whether there is an automorphism
π of (D,F) such that π(a) = a and π(b) = c. We can nondeterministically check all
possible bijections from D to itself, which gives us the membership in NP.

7. Proof of Lemma 2.4. We restate Lemma 2.4 and prove it in this section.
Lemma 2.4. Problem #CSP(Γ) is polynomial-time reducible to #CSP(F).
Recall that F = {f1, . . . , fh} and Γ = {Θ1, . . . ,Θh}, with ri being the arity of fi.

Let I be an instance of #CSP(Γ) with n variables indexed by [n] and m constraints,
and let R be the relation it defines.

For each k ≥ 1, we use Ik to denote the following instance of #CSP(F): Ik has n
variables indexed by [n] and for each constraint (Θ, i1, . . . , ir) ∈ I, we add k copies of
(f, i1, . . . , ir) to Ik, where f ∈ F is the r-ary function that corresponds to Θ ∈ Γ. We
use Fk(x) to denote the n-ary nonnegative function that Ik defines. Then we have

(7.1) Fk(x) =
(
F1(x)

)k

for all x ∈ Dn.

We show below that to compute |R| it suffices to evaluate Z(Ik) for k from 1 to some
polynomial of m. This gives the desired reduction from #CSP(Γ) to #CSP(F).

To this end, we let Qm denote the set of all integer tuples

q =
(
qi,t ≥ 0 : i ∈ [h] and t ∈ Dri such that fi(t) > 0

)D
ow

nl
oa

de
d 

04
/1

6/
17

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2194 JIN-YI CAI, XI CHEN, AND PINYAN LU

that sum to m. Then we let Valuem denote the following set of positive numbers:

Valuem =

⎧⎨
⎩

∏
i∈[h], t∈Dri

(
fi(t)

)qi,t
: q ∈ Qm

⎫⎬
⎭ .

It is easy to show that both |Qm| and |Valuem| are polynomial in m (as d = |D|,
h, and ri, i ∈ [h], are all constants) and can be computed in polynomial time in m.
Moreover, by the definition of Valuem we have, for every x ∈ Dn,

F1(x) > 0 =⇒ F1(x) ∈ Valuem.

For each c ∈ Valuem, let Nc be the number of x ∈ Dn such that F1(x) = c. Then

(7.2) Z(I1) =
∑

c∈Valuem

Nc · c.

We also have

(7.3)
∣∣R∣∣ = ∑

c∈Valuem

Nc,

and by (7.1)

(7.4) Z(Ik) =
∑

c∈Valuem

Nc · ck for every k ≥ 1.

By viewing {Nc : c ∈ Valuem} as variables and taking k from 1 to |Valuem|, (7.4)
gives us a Vandermonde system from which we can compute Nc for each c ∈ Valuem

in polynomial time. We can then use (7.3) to compute |R|.
This finishes the proof of Lemma 2.4.

8. Proof of Lemma 3.4. We restate Lemma 3.4 and prove it in this section.
Lemma 3.4. If F is not balanced, then #CSP(F) is #P-hard.
Assume that F is not balanced. Then there must exist an instance I of #CSP(F)

which defines an n-ary function F (x1, . . . , xn) and integers a, b : 1 ≤ a < b ≤ n such
that the following da × db−a matrix M is not block-rank-1: The rows are indexed by
u ∈ Da, the columns are indexed by v ∈ Db−a, and

M(u,v) =
∑

w∈Dn−b

F (u,v,w) for all u ∈ Da and v ∈ Db−a.

Let A = MMT, which is a symmetric, nonnegative da × da matrix, with both
its rows and columns indexed by tuples u ∈ Da. As M is not block-rank-1, it follows
from Lemma 2.2 that A is not block-rank-1.

To finish the proof we give a polynomial-time reduction from ZA(·) to #CSP(F).
As the former is #P-hard by Theorem 2.3 (since A is not block-rank-1), we have that
#CSP(F) is also #P-hard.

Let G = (V,E) be an input undirected graph of ZA(·). We construct an instance
IG of #CSP(F) from G using I (which is considered as a constant here since it does
not depend on G) as follows:

1. For each v ∈ V , we create a variables over D, denoted by xv,1, . . . , xv,a.
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2. For each e = vv′ ∈ E, we add (b− a) + 2(n− b) variables over D, denoted by

ye,a+1, . . . , ye,b, ze,b+1, . . . , ze,n, z
′
e,b+1, . . . , z

′
e,n.

Then we make a copy of I over the n variables(
xv,1, . . . , xv,a, ye,a+1, . . . , ye,b, ze,b+1, . . . , ze,n

)
,

as well as the n variables(
xv′,1, . . . , xv′,a, ye,a+1, . . . , ye,b, z

′
e,b+1, . . . , z

′
e,n

)
.

This finishes the construction of IG.
It is easy to show that ZA(G) = Z(IG). This gives a polynomial-time reduction

from ZA(·) to #CSP(F) since IG can be constructed from G in polynomial time.

9. Equivalence of balance and strong balance. In [27], Dyer and Richerby
used the following notion of strong balance for unweighted constraint languages, and
showed that #CSP(Γ) is in polynomial time if Γ is strongly balanced, and is #P-hard
otherwise.

Definition 9.1. Let Γ be an unweighted constraint language over the domain set
D. We call Γ strongly balanced if, for every instance I of #CSP(Γ) which defines
an n-ary relation R and any a, b, c : 1 ≤ a < b ≤ c ≤ n, the following da×db−a matrix
M is block-rank-1: The rows and columns are indexed by u ∈ Da and v ∈ Db−a, and

(9.1) M(u,v) =
∣∣∣{w ∈ Dc−b : ∃z ∈ Dn−c such that (u,v,w, z) ∈ R

}∣∣∣
for all u ∈ Da and v ∈ Db−a. There are two special cases. When c = b, M(u,v) is 1 if
there exists a z ∈ Dn−c with (u,v, z) ∈ R, and is 0 otherwise. When n = c, M(u,v)
is the number of w ∈ Dc−b such that (u,v,w) ∈ R.

Theorem 9.2 (see [27]). #CSP(Γ) is in polynomial time if Γ is strongly balanced,
and is #P-hard otherwise.

A key difference between the notion of balance we used for weighted languages F
(Definition 3.2) and the one above for unweighted languages Γ [27] is that we do not
allow the use of existential quantifiers in the former. One can similarly introduce the
following notion of balance for unweighted languages.

Definition 9.3. Let Γ be an unweighted constraint language over the domain set
D. We say Γ is balanced if for every instance I of #CSP(Γ) which defines an n-ary
relation R and any a, b : 1 ≤ a < b ≤ n, the following da × db−a matrix M is block-
rank-1: The rows are indexed by u ∈ Da, the columns are indexed by v ∈ Db−a,
and

(9.2) M(u,v) =
∣∣∣{w ∈ Dn−b : (u,v,w) ∈ R

}∣∣∣ for all u ∈ Da,v ∈ Db−a.

It is clear from the definitions that strong balance implies balance for unweighted
languages Γ. We show below that these two notions are indeed equivalent.

Lemma 9.4 (equivalence of balance and strong balance). If Γ is balanced, then it
is also strongly balanced.

Proof. We assume that Γ is balanced. Let I be any instance of #CSP(Γ) which
defines an n-ary relation R. Let a, b, and c be integers such that 1 ≤ a < b ≤ c ≤ n.
It suffices to show that the matrix M in (9.1) is block-rank-1.

For this purpose, we define a new input instance Ik of #CSP(Γ) for each k ≥ 1:
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1. First, Ik has c+ k(n− c) variables in the following order:

x1, . . . , xc, y1,c+1, . . . , y1,n, . . . , yk,c+1, . . . , yk,n.

Below we let yi, i ∈ [k], denote (yi,c+1, . . . , yi,n) for convenience.
2. For each i ∈ [k], we add a copy of I on the following n variables of Ik:

x1, . . . , xc, yi,c+1, . . . , yi,n.

It is clear that I1 is I (up to renaming of variables). We use Rk to denote the relation
that Ik defines, k ≥ 1.

As Γ is balanced, the following da×db−a matrix M[k] is block-rank-1: For u ∈ Da

and v ∈ Db−a, we have

M [k](u,v) =
∣∣∣{(w,y1, . . . ,yk) : w ∈Dc−b,y1, . . . ,yk ∈ Dn−c

and (u,v,w,y1, . . . ,yk) ∈ Rk

}∣∣∣.
From the definition of Ik, we have M(u,v) > 0 if and only if M [k](u,v) > 0 for all
u ∈ Da and v ∈ Db−a.

As a result, there exist pairwise disjoint and nonempty subsets A1, . . . , As of Da

and pairwise disjoint and nonempty subsets B1, . . . , Bs of Db−a for some s ≥ 0, with

M(u,v) > 0 ⇐⇒ M [k](u,v) > 0 ⇐⇒ u ∈ A� and v ∈ B� for some � ∈ [s].

Now to prove that M is block-rank-1, we need only show that for every � ∈ [s],

(9.3) M(u1,v1) ·M(u2,v2) = M(u1,v2) ·M(u2,v1) for u1,u2 ∈ A�, v1,v2 ∈ B�.

To prove (9.3), we let

Wi,j =
{
w ∈ Dc−b : ∃y ∈ Dn−c such that (ui,vj ,w,y) ∈ R

}
for i, j ∈ {1, 2}.

Moreover, for each w ∈ Wi,j , let Yi,j,w denote the (nonempty) set of y ∈ Dn−c such
that (ui,vj ,w,y) ∈ R. Using Wi,j and Yi,j,w, it follows from the definition of Ik that

M [k](ui,vj) =
∑

w∈Wi,j

∣∣∣Yi,j,w

∣∣∣k.

Because M[k] is block-rank-1, we have the following equation for every k ≥ 1:

∑
w∈W1,1,w′∈W2,2

( ∣∣Y1,1,w

∣∣ · ∣∣Y2,2,w′
∣∣ )k

=
∑

w∈W1,2,w′∈W2,1

( ∣∣Y1,2,w

∣∣ · ∣∣Y2,1,w′
∣∣ )k

.

Because the equation above holds for every k ≥ 1, the two sides must have the same
number of positive terms. As a consequence of the definition, Yi,j,w is nonempty for
all w ∈ Wi,j . As a result, we have |W1,1| · |W2,2| = |W1,2| · |W2,1|, and (9.3) follows.

This completes the proof of Lemma 9.4.
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[32] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48
(1990), pp. 92–110, https://doi.org/10.1016/0095-8956(90)90132-J.

[33] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemp. Math. 76, American
Mathematical Society, Providence, RI, 1988, https://doi.org/10.1090/conm/076.

[34] P. G. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci.,
200 (1998), pp. 185–204, https://doi.org/10.1016/S0304-3975(97)00230-2.

[35] P. G. Jeavons, D. A. Cohen, and M. C. Cooper, Constraints, consistency and closure, Artifi-
cial Intelligence, 101 (1998), pp. 251–265, https://doi.org/10.1016/S0004-3702(98)00022-8.

[36] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs?, SIAM J. Comput., 37 (2007), pp. 319–357,
https://doi.org/10.1137/S0097539705447372.

[37] G. Kun and M. Szegedy, A new line of attack on the dichotomy conjecture, European. J.
Combin., 52 (2016), pp. 338–367, https://doi.org/10.1016/j.ejc.2015.07.011.

[38] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.),
26 (1992), pp. 211–244, https://doi.org/10.1090/S0273-0979-1992-00284-7.

[39] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hungar., 18 (1967), pp. 321–328.
[40] P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008, pp. 245–254,
https://doi.org/10.1145/1374376.1374414.

[41] P. Raghavendra and D. Steurer, How to round any CSP, in Proceedings of the 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, 2009, pp. 586–594, https://
doi.org/10.1109/FOCS.2009.74.

[42] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual
ACM Symposium on Theory of Computing, 1978, pp. 216–226, https://doi.org/10.1145/
800133.804350.

[43] M. Thurley, The Complexity of Partition Functions on Hermitian Matrices, preprint, https://
arxiv.org/abs/1004.0992, 2010.

[44] M. Tulsiani, CSP gaps and reductions in the Lasserre hierarchy, in Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, 2009, pp. 303–312, https://doi.org/
10.1145/1536414.1536457.

[45] L. G. Valiant, Holographic algorithms, SIAM J. Comput., 37 (2008), pp. 1565–1594, https://
doi.org/10.1137/070682575.

D
ow

nl
oa

de
d 

04
/1

6/
17

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/1.9781611973082.132
https://doi.org/10.1137/1.9781611973105.93
https://doi.org/10.1137/07068062X
https://doi.org/10.1145/1314690.1314691
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1137/100811258
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/090757496
https://doi.org/10.1137/090757496
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1090/conm/076
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1016/S0004-3702(98)00022-8
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1016/j.ejc.2015.07.011
https://doi.org/10.1090/S0273-0979-1992-00284-7
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1109/FOCS.2009.74
https://doi.org/10.1109/FOCS.2009.74
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://arxiv.org/abs/1004.0992
https://arxiv.org/abs/1004.0992
https://doi.org/10.1145/1536414.1536457
https://doi.org/10.1145/1536414.1536457
https://doi.org/10.1137/070682575
https://doi.org/10.1137/070682575

	Introduction
	Preliminaries
	Counting graph homomorphisms
	Weighted #CSPs
	Reduction from unweighted to weighted #CSPs
	Strong rectangularity

	A dichotomy theorem for nonnegatively weighted #CSPs and its decidability
	Vector representation
	Tractability: The counting algorithm
	Decidability of the dichotomy criterion
	Primitive balance
	Reformulation of the decision problem

	Proof of Lemma 2.4
	Proof of Lemma 3.4
	Equivalence of balance and strong balance
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


