arXiv:1702.02693v1 [cs.CC] 9 Feb 2017

Dichotomy for Real Holant® Problems

Jin-Yi Cai* Pinyan Lu' Mingji Xiat

Abstract

Holant problems capture a class of Sum-of-Product computations such as counting matchings. It
is inspired by holographic algorithms and is equivalent to tensor networks, with counting CSP being
a special case. A classification for Holant problems is more difficult to prove, not only because it
implies a classification for counting CSP, but also due to the deeper reason that there exist more
intricate polynomial time tractable problems in the broader framework.

We discover a new family of constraint functions . which define polynomial time computable
counting problems. These do not appear in counting CSP, and no newly discovered tractable
constraints can be symmetric. It has a delicate support structure related to error-correcting
codes. Local holographic transformations is fundamental in its tractability. We prove a complexity
dichotomy theorem for all Holant problems defined by any real valued constraint function set on
Boolean variables and contains two 0-1 pinning functions. Previously, dichotomy for the same
framework was only known for symmetric constraint functions. The set .Z supplies the last piece
of tractability. We also prove a dichotomy for a variant of counting CSP as a technical component
toward this Holant dichotomy.

*University of Wisconsin-Madison. jyc@cs.wisc.edu.

TITCS, Shanghai University of Finance and Economics 1u.pinyan@mail.shufe.edu.cn

iState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences. University of Chinese
Academy of Sciences. mingji@ios.ac.cn

1 Introduction

There has been great progress in the complexity classification program for counting problems defined
as Sum-of-Product computations. An ideal outcome of such a result is usually stated in the form of
a dichotomy theorem, namely it classifies every single problem expressible in the class as either #P-
hard or polynomial time solvable. Counting Constraint Satisfaction Problems (#CSP) is the most
well-studied framework in such context. For #CSP over the Boolean domain, two explicit tractable
families, namely & (product type) and &/ (affine type), are identified; any function set not contained
in these two families is proved to be #P-hard. The result was first proved for unweighted 0-1 valued
constraint functions [12], later for non-negatively weighted functions [13], and finally for complex valued
functions [11]. From non-negative values to complex values, the tractable family 7 expands highly non-
trivially; the tractability incorporates cancelations and the proof depends on a nice algebraic structure.
Dichotomy theorems are also known for #CSP over large domains although the tractability criterion is
not very explicit and it is not even known to be decidable in the case of complex weighted constraint
functions [I}, 14], 15, B, 2]. In this paper, we focus on problems over the Boolean domain.

Unfortunately, not every problem defined by local constraints can be described in the #CSP
framework, and thus not every such problem is covered by the #CSP dichotomies. E.g., the graph
matching problem is such an example [16]. However, it is naturally included in a more refined framework,
called Holant problems. This was defined in [7], and the name was inspired by the introduction of
Holographic Algorithms by L. Valiant [20, 19] (who first used the term Holant). The Holant framework
is essentially equivalent to tensor networks. #CSP can be viewed as a special case of Holant problems.
Compared to #CSP, the Holant framework contains more surprising tractable problems. Consequently,
it is also much more challenging to prove dichotomy theorems in the Holant framework. After a great
deal of work [8], [6l 17, I8 5], a dichotomy for Holant problems was proved for symmetric constraint
functions. But obviously symmetric functions are only a tiny fraction of all constraint functions.

Let us meet a function f on 14 variables. We will show that this f is a new breed of functions which
define tractable problems in the Holant framework. It is not symmetric, and such tractable functions

do not show up in the #CSP framework.
0001111
Let H= (0 1 1 0 0 1 1|. A standard definition of the [7,4]-Hamming code C consists of
1010101
0-1 strings of length 7 with H as its parity check matrix: C' = {x € Z! | xH = 0 mod 2}. We consider
the dual Hamming code C which has H as a generating matrix. C is a linear subspace of 7% of
dimension 3. It is well-known that every nonzero word of C* has Hamming weight 4. Let

S = {ww e Z¥ | w e Ct},

where W flips every bit of w. Clearly S is an affine linear subspace in Zi* of dimension 3.

Now our function f is defined as follows: f has support S. In the column order of H we may take
free variables x1, z9, x4, and on the support S we have x3 = x1 + 9, T5 = 1 + T4, Tg = To + x4, and
x7 = x1 + 2 + x4 (arithmetic in Zsy). There are 7 other variables x74; (1 < i < 7), and on S we have
Z74; = T;. In terms of the 0-1 valued free variables x1, 2,24, f takes value (—1)*1%2%4 on S, and 0
elsewhere. Thus on the support set S, f = 1, except at one point z; = x9 = 4 = 1 it takes value —1.

It turns out that this f defines a tractable Holant problem, even though it does not belong to any
of the previously known tractable constraint function families for ##CSP. The tractability of f depends
on the fact that every ww € S has Hamming weight exactly 7, and (as a consequence of C+ being a
linear code where every nonzero word has weight 4) that for any w # w’ with both w,w’ € C*, the
number of common bit positions where both ww and w’w’ have bit 1 is always 3.

For Holant problems with general (not necessary symmetric) functions, the only known dichotomy is
for a restricted class called Holant™ problems [I0], where all unary functions are assumed to be available.
How to extend this is a challenging open question. A very broad subclass of Holant problems is called
Holant®, where only two unary pinning functions Ag, A; (that set a variable to 0 or 1) are assumed to
be available. Holant® already covers a lot of ground, including all of #CSP, graph matching and so on.

#CSP is the special case of Holant problems where the constraint function set is assumed to contain
EqQuaLiTy of all arities. One can show that if we have an EQUALITY of odd arity at least 3, we
can realize EQUALITY of all arities. But, if we have an EQUALITY of even arity, we can only realize
EQUALITY of even arities. Dyer, Goldberg and Jerrum [I3] proved that in the #CSP framework one
can realize the pinning functions Ag and A;. We will denote by #CSP§ the special case of #CSP where
each variable appears an even number of times, and Ag, A; are available. #CSP§ plays an important
role. A dichotomy for #CSP§ is somewhat unavoidable to get a dichotomy for Holant. This is not
only logically true in the sense that a dichotomy for Holant will imply a dichotomy for #CSP$, but
also true in the sense that one usually proves a dichotomy #CSP§ as a major step toward a dichotomy
of Holant [I8 5]. Previously one could only prove dichotomy for #CSP§ for symmetric functions.
Compared to the dichotomy for #CSP, we already know that there is one more tractable family in the
dichotomy for symmetric #CSP$. It is a slight modification of the family o7, which is denoted by .&7*.
Is this the only addition when we go from #CSP to #CSP§ without the symmetry restriction?

1.1 Owur Results

In this paper we prove a complexity dichotomy for Holant® with general (not necessary symmetric) real
valued functions. In order to do that we first prove a dichotomy for #CSP§ with general (not necessary
symmetric) complex valued functions. In addition to the two tractable families &2 and & for #CSP,
and the known modification «/¢, we discover a brand-new tractable family, denoted by .#, which we
call local affine functions. The dichotomy for #CSP§ says that these four (22, o/, &% and .Z) are
exactly all the tractable families. The dichotomy for Holant® problems basically says that the tractable
family for Holant® is precisely the union of tractable families of #CSP§ and Holant*.

Conceptually (and also technically but somewhat hidden), the most important contribution of this
work is the discovery and identification of the new tractable family .. The formal definition and
characterization is given in Section [3| Our function f of arity 14 is among its smallest examples. Given
the succinct mathematical definition of ., the description of the algorithm is very short. However, we
would like to point out that this formal simplicity hides many interesting and surprising structures.

For reasons that will become clearer, we will now denote our function f of arity 14 as f&(+—). Five
years ago, we discovered a polynomial time algorithm for counting problems defined by f&(4+—) (and
some similar functions) in the Holant® and #CSP§ setting. The algorithm is non-trivial. But we were
not able to prove a dichotomy.

Let’s consider another 0-1 valued function f3;: It has arity 31. It is the 0-1 indicator function of
a (particular kind of) 5-dimensional linear subspace S of Z3!. Five of 31 variables are considered free
variables and all 31 variables on S correspond to exactly all possible non-empty linear combinations of
the five free variables. The function f3; is a pure affine function in <7, and known to be tractable alone.
On the other hand, the function f{(+—) is neither in & nor in &/, but we also had a polynomial
time algorithm for f&(+—) type functions alone. The real challenge, for the quest of a dichotomy, is to
put them together. What is the complexity for Holant®(fs1, f&(+—)) or #CSPS(fs1, f&(+—))7 If we
replace f3; with a smaller arity but of the same structure such as fis, f7, f3, fi, we can prove that the
problem is #P-hard. It seems highly implausible that tractability would start to show up only at such
high arity. And so we conjectured that #CSP§(f31, f&(+—)) is also #P-hard. We tried to prove this
for five years but failed. We also tried to find a P-time algorithm without success, until now. It is quite

tantalizing to think about what property is shared by f&(+—), fs1, fes, ... but not with fis, f7, f3, f1?

We now know that the explanation is this new family .#. Interestingly, the deceptively simple
definition of .Z does include f&(+—), fs31, fe3, ... but excludes fis, f7, f3, fi. (This fact can be verified
but is not totally trivial.) By the unifying notion of ., we also have a much simpler description
of a polynomial time algorithm, which starts with a global linear system and a localized holographic
transformation performed simultaneously everywhere. (Because this description is much simpler, we
will not describe our earlier algorithm in this paper.)

Several facts about . are worth mentioning. These interesting structures can only appear for
general functions but not for symmetric ones. Secondly, although the definition of .Z seems to involve
complex numbers in an essential way, it does include some real valued functions such as f&(+—). We
cannot avoid going through C even if we only hope to prove a dichotomy for real valued functions.
Although the algorithm for .Z looks short, it does have a very different nature compared to that for &,
& and &/%. The algorithms for previous known tractable families basically perform a local elimination
to handle the variables one by one. The algorithm £ contains a global step, which is to solve a global
linear equation, followed by a localized holographic transformation simultaneously everywhere. We have
tried many purely local algorithms and failed, until we reached this global algorithm.

1.2 Techniques by Examples

Let us first describe the proof that #CSPS(fis, f&(4+—)) is #P-hard. Here fi5 is a 0-1 indicator
function of a 4-dim linear subspace S of Zi°; 4 variables are chosen as free variables and all 15 variables
on S correspond to all their non-empty linear combinations. An instance of #CSP§(fis, f$(+—)) is a
bipartite graph (V, U, E)) where V are variables, U are constraint functions from { fis, f&(+—), Ao, A1}
and F indicates how the constraints are applied. Being in #CSPs, every v € V has even degree. The
Sum-of-Product computation is to evaluate .., 1} [Iuer fu(o), where fy is the function at u € U.
If a variable appears exactly twice, once in A; and once as an input to fi5, this effectively pins that
input of fi5 to 1. This creates a function g of arity 14, which is “realizable” in #CSPs. What is g7
Even though fi5 is not symmetric, clearly not every subset of 4 variables can be chosen as free, every
single variable can be free (as part of a subset of 4). In group terminology, the symmetry group of fi5
is not G135, but there is a transitive group of symmetry GL4(Z2) acting on the nonzero vectors of Z%.
Hence up to renaming the variables, g is the same as setting x4 of fi5 to 1. This function has
exactly the same support structure as f&(4—), but the function values are all 1 on its support, whereas
f£(4+—) has value —1 when the 3 free variables are all equal to 1. We call this new function f7(+-—).
For both functions f&(+—) and f7(+—) we can divide the 14 inputs into 7 pairs in the same way, which
will be called bundles in this paper; each bundle has two input variables which always take opposite
0-1 values on the support; among the 7 bundles they have the same linear relation. Therefore, we can
combine them in the following straightforward way: for each corresponding bundle connect the two
variables labeled (—), one from each bundle, and leave the variables labeled (+) as inputs of the gadget.
Technically we have a #CSP4 construction where for each corresponding bundle there is a variable that
appears exactly twice, once for each variable labeled (—) in the bundle. This gadget realizes a function
h with 14 inputs in 7 bundles as well. The two inputs in each bundle must have the same value on the
support, and the value of h is the same as f$(+—), since f7(4+—) is identically 1 on the support. So,
this function can be denoted as f&(++). There is an easy reduction #CSP(f&) <p#CSPS(f&(++)):
In any instance of #CSP(f¢), replicate twice every occurrence of variables in constraints, and replace
f8 by f(++). Hence #CSP(f8) <1 #CSPS(fis, 2 (+-)). As [8 & of U P, #CSP(f¢) is #P-hard.
How about #CSPS(f7, f¢(+—))? Here f7 has arity 7 and a support of dimension 3. Similarly, if
we pin a variable of f7 to 1 we get f3(+—). But f&(+—) and f3(+—) do not have the same support
structure. Then we need the following more complicated gadget as shown in Fig. to construct f&(++).

X14X24Xz Uqtup Vvitvy witwy
/e 2

Figure 1: The gadget realizing f¢(4++) is composed of one copy of f&(4+—) and 3 copies of f3(+—),
shown as the 4 dots in the picture. Each f3(+—) function has 6 edges stretched out as input variables,
which are grouped into 3 bundles, shown as ellipses. The function f&(4—) has 14 edges stretched out
shown as dotted lines (only one pair is completely shown). They are grouped into 7 bundles, shown
as rectangles. 9 pairs of variables are connected (shown as horizontal pink line segments), leaving
3 x 6+ 14 —9 x 2 =14 variables exposed as external variables of the gadget, which are circled.

We observe that this construction is very delicate. After connecting the variables u;(—) and, resp.
uz(—), of one copy of f3(+—) with x;(—) and, resp. the variable labeled “xy + z3(—)”, of f&(+—), we
have in fact forced the value of the variable labeled “u; + ua(—)” of f3(+—) to equal (on the support)
to the variable labeled “x; 4+ x2 4+ x3(—)” of f&(4—). Similarly after connecting v;(—) and ve(—) with
x2(—) and “xy +x3(—)" of f&(+—), the value of “v; +wvy(—)” is also forced to equal “x; + x2 + x3(—)",
but that variable has already been taken. On the other hand, after connecting wi(—) and wa(—) with
x3(—) and “x1 +x2(—)" of f&(+—), the value of “wy +wz(—)” is also forced to equal “x; +z2+x3(—)”.
Hence it is legitimate to connect “v; 4+ va(—)” with “w; 4+ wa(—)” (finding a home for both orphans.)
Similarly, both “u; + ua(+)” and “vy + va(+)” are forced to equal “x; 4+ x2 + x3(+)” (on the support),
hence connecting them is also legitimate. In the meanwhile, the pair z;(+) and w; (+) must be equal on
the support, forced by the connection between u;(—) and z;(—), making them a (++) pair. Similarly,
x9(+) and vy (+) are forced to equal on the support, making a (+-+) pair, and z3(+) and w;(+4) are
forced to equal making another (++) pair. Then “xs + x3(4)” and ua(+) make a (++) pair, but this
bundle satisfies the linear dependence that it is equal to the sum of the two free variables z2(+) and
x3(+) on the support. The same can be said for the other 3 dependent bundles. In all, it is clear
that the 7 exposed pairs of variables associated with z1(+), z2(+), z3(+) “x1 + z2(+)”, “z1 + z3(+)”,
“ro + x3(+)” and “x; + x2 + x3(+)” form 7 bundles of equal variables, and they have precisely the
3-dimensional support structure in a 14-dimensional space, as described for f&(4+—). As the value of
f3(+—) is always 1 on the support, it is clear that the function of the gadget is f&(4+).

The above construction and proof of hardness are special cases of our Lemma We note that
these functions are really sparse. For example the function f&(+—) has only 8 nonzero values out of

16384 (= 2'*) values total. They are very “fragile”: If you do not make the connection “just so”, then
chances are that the construction will collapse and no good reduction can be obtained. On the other
hand, precisely because of their delicate structure one can come up with extremely intricate designs.
At the same time, the interesting structure may also portend some unforeseen algorithms.

We will use these delicate structures to prove #P-hardness. But to prove a dichotomy theorem, one
needs to prove that an arbitrary function set not contained in one of the 4 tractable families is #P-hard.
The given functions may not have any of the nice structure, then how can we do the construction? To
handle that, we have a number of regularization lemmas in Section showing that one can always
construct gadgets to regularize the functions. Starting with any function set not contained in one of the
tractable families, we can produce functions with similar nice structures but still outside the respective
tractable families unless we already can prove #P-hardness outright.

Then, the question is how about #CSPS(f31, f&(4+—))? Can we also construct the function f&(4+)
or other functions to get #P-hardness? If we pin two free variables of f31, we get either f7(+ + ++)
or f7(++ ——). They are not like f7(+—). With these, together with f&(+—), we do not know how to
construct functions like f&(4+) as before. All attempts to construct similar gadgets like in Figure
failed. Now as a consequence of our dichotomy theorem, assuming #P is not equal to P, we can prove
that no such construction can succeed. The reason is that they both belong to the new tractable family
Z. The algorithm for that and a characterization for .£ is given in Section [3] The criteria there can
be used to show that fs1, f&(+—) are in the family . while fi5, f7, f3, f1 are not.

2 Preliminaries

A (constraint) function of arity n is a mapping from {0,1}" — C. We denote by =,, the EQUALITY
function of arity n. A symmetric function f on n Boolean variables can be expressed by [fo, f1, ..., fal,
where f; is the value of f on inputs of Hamming weight j. Thus, (=,) = [1,0,...,0,1] (with n —1
zeros). We also use Ag, A; to denote [1,0] and [0, 1] respectively. A binary function f is also expressed
£(0,0) f(0, 1)]
7(10) F(11)
A signature grid Q = (G,.%,m) consists of a graph G = (V, E), and a labeling 7 of each vertex
v € V with a function f, € %#. The Holant problem on instance 2 is to compute Holantg =
> 05101} Lvev fo(0]Ew)), Where o[p(,,) is the assignment o restricted to the edges incident to v.
A Holant problem is parameterized by a set of functions.

by the matrix [

Definition 2.1 (Holant). Given a set of functions .7, we define a counting problem Holant(.%):
Input: A signature grid Q = (G, %, m);
Output: Holantg.

Suppose ¢ € C is a nonzero number. As constraint functions f and cf are equivalent in terms
of the complexity of Holant problems they define. Hence we will consider functions f and cf to be
interchangeable. We would like to characterize the complexity of Holant problems in terms of its
function setsE| Some special families of Holant problems have already been widely studied. For example,
if all the EQUALITY functions are in .% then this is exactly the weighted #CSP problem. Other well-
studied special families of Holant are Holant* and Holant®.

Definition 2.2. Let % denote the set of all unary functions. Then Holant* (%) = Holant(.% U %).

! We allow .Z to be an infinite set. Holant(.#) is tractable means that it is computable in P even when we include the
description of the functions in the input Q in the input size. Holant(.%) is #P-hard means that there exists a finite subset
of # for which the problem is #P-hard. For considerations of models of computation, function values are algebraic in C.

Definition 2.3. Holant‘(.#) = Holant(.# U {Ag, A1}).
#CSP(F) is equivalent to Holant(.# U {Ag, A1, =1,=2,=3,--- }). We define #CSP$ as the follows.
Definition 2.4. #CSP5(.%) = Holant(.# U {Ao, A1, =2,=4,=¢, " }).

In the above definitions, the functions and domain {0,1} are without structures. However, as we
describe the complexity classification of counting problems, especially for tractable problems, we may
assign structures to the domain and the functions. We may consider polynomials in Z[z1,xs. .., zy]
with each z; taking values from {0,1} C Z; the evaluation in Z. In another setting, we may consider
the domain as a finite field Zg of size 2, and {0, 1}" as a vector space of dimension n over Zs.

Definition 2.5 (Support). The underlying relation, also called the support of a function f is given by
supp(f) = {z € {0,1}"[f(x) # 0}.

We say a relation R C {0,1}" is affine if it is an affine linear subspace of ZJ. It is composed of
solutions of some system Ax = b of affine linear equations over Zo. If supp(f) is affine, we say f has
affine support. We also view this relation as a 0-1 valued indicator function x gz—p.

Definition 2.6 (Compressed function [4]). If f has affine support of dimension r, and X =
{xji,...,z;.} C{x1,29,..., 25} is a set of free variables for supp(f), then fx is the compressed function
of f for X such that fx(xj,,...,xj,) = f(x1,22,...,2,), where (x1,x2,...,x,) € supp(f). When it is
clear from the context, we omit X and use [to denote fx.

If f has affine support, then r = dimsupp(f) is called the rank of f. Usually, we may rename
variables so that x1,xzs...x, is a set of free variables.

Definition 2.7 (Product type: &2). & denotes the class of functions which can be expressed as a product
of unary functions, binary equality functions ([1,0,1]) and binary disequality functions (]0,1,0]).

Definition 2.8 (Affine: &7). &7 denotes all functions f : {x1,x2,...,xz,} — C satisfying the following
conditions:

e supp(f) is affine X(az=v)-

o Assume x1,Zo,...,x, are free variables. The compressed function of f is X -iL@1m2r)+2Q(@1,.ar)
(for some nonzero constant A € C) where L is an integer coefficient linear polynomial and Q is
an integer coefficient multilinear polynomial where each monomials has degree 2.
Of course, [1is the product A - X (Az—p) L@ 2r) 201 Tr)
We use « to denote e1? = %, a square root of ¢. The notation a = b means a = b mod 2.

A matrix M € C?*2 defines a holographic transformation f +— M®"(f), where we list the values of

f as a column vector indexed by {0, 1}". Let M, = [é g], and My = I = [(1) (1)]

Definition 2.9 (« dual affine: &%), &7/ = {Mﬁ?”itym(f) | fed}.
The inverse transformation of M, is M,-1. A function f is in o/¢ iff MS’Z fisin o7.
Theorem 2.1. A #CSP(.%) problem has polynomial time algorithm, if one of the following holds,
FCP or FCA.

Otherwise, it is #P-hard.

The following two families of functions are used in the dichotomy for #Holant™(.%). M is the set
of all functions f such that f is zero except on n+ 1 inputs whose Hamming weight is at most 1, where
n is the arity of f. The name M is given for matching. T is the set of all functions of arity at most 2.
To discuss the complexity of Holant problem, we may always remove identically zero functions.

Lemma 2.1. Let f = g®h, none of them identically 0. Then Holant®(FU{f}) =r Holant°(.Z U{g, h}).
Holant* (% U{f}) =r Holant* (% U {g,h}).

So we only work with functions which cannot be further decomposed.

Theorem 2.2. Let F be a set of non-decomposable functions. Then #Holant*(.7) problem has
polynomial time algorithm, if one of the following holds,

FCT or FCHP or FCZP or F CIZM,

1 —1 -1 1

where H is an orthogonal matrix and Z = <1 1.), or (1. 1) Otherwise, it is #P-hard.

3 Local Affine Functions

The next definition is crucial for this work.

Definition 3.1 (Local affine:). A function f is in £, if and only if for each o = s189 -+ s, € {0,1}"
in the support of f, (Mas1 @ Mgsa @ -+ @ Musn) f is in o .

The notation M,s; just means that when s; = 0 the jth input is transformed by the identity matrix
(in fact, not transformed) and when a; = 1 the jth input is transformed by M,. This is very interesting
since each arity performs a possible different holographic transformation. This is why we use the term
”local” to name this family of functions.

By Definition f € Z if and only if for each o = s152- - sy, € supp(f), the transformed function
Mof:(x1,...,2p) — ai=1 Si%i f(xq,...,xy,) is in &7. Here each s; is a 0-1 valued integer, and the sum
>oiy six; is evaluated as an integer (or an integer mod 8).

Of course the identically 0 function belongs to .Z. If f € £ and is not identically 0, then there is
some o € supp(f), such that M, f € o/. It is apparent by its form, M, f = a2i=15%i f that f2 € of .
Since f and f2? have the same support, it follows that supp(f) is an affine linear subspace over Zs.
Assume that f has affine support with free variables x1, ..., x,, let supp(f) be described by the data
(A,b), where A € {0,1}™*" is a 0-1 integer matrix of which the top r X r matrix is I,,, and b € {0,1}" is
a 0-1 integer vector of which the first r entries are all 0. The i-th 0-1 variable z; (1 <14 < n) is expressed
as r; = Z;Zl aijzj + b mod 2. Then by f? € o/, we have the following expression

f=X-supp(f) - ascin s s v (1)

where A # 0, ¢g € Z for all S C [r]. This is easy to see because after a global scaling, each nonzero
entry of f2 is a power of i and as a result each nonzero entry of f is a power of a.. Every such function
can be expressed in the above formula. Since o® = 1 we may consider all coefficients c¢g belong to
Zg. The multilinear polynomial in Zg[z1,...,z,] is unique for f. To see this, take the quotient ¢(x)
of two expressions on the support, and write g(z) = supp(f) - a”’®). If the multilinear polynomial
P(z) € Zglxi,...,zy] is not identically zero, then let S C [r] be of minimum cardinality such that
Hjes x; is a term with non-zero coefficient in P(x). Assigning z; to 1 for all j € S, and all other z;
to 0, for j € [r]\ S, shows that g(z) is not identically 1 on supp(f). Then by the fact that f? € & we

know that cg = 0 mod 2 for |S| = 2, and ¢g = 0 mod 4 for |S| > 3. We may normalize it so that A = 1
and ¢y = 0. We can write it more explicitly as
f=X-supp(f) - o @+2Q@)+4H () (2)

where L(z) = >77_, cjz; is a linear function, Q(x) = > <, CjkT;ak is a quadratic (multilinear)
polynomial, and H(z) = > <<, Cike®jTre + - -+ is a (multilinear) polynomial with all monomials
of degree at least 3.

Any (s1,...,s,) € {0,1}" determines a unique point o = (s1,...,8r, Sy4+1,.-.,5,) € {0,1}" in
supp(f), from which we get the transformed function a2i=1%% f € ¢/. Here each s; is a 0-1 constant
and x; is a 0-1 variable.

3.1 Algorithm

The most interesting and surprising discovery of this work is the following polynomial time algorithm.
Theorem 3.1. There is a polynomial time algorithm for Holant(.ZL).

Proof. We first focus on the support but ignore the concrete value of the functions. Since the support of
the function at each vertex is affine, we can solve a linear system to get an assignment for all the edges
which is on the support for all the functions. If the linear system does not have any solution, we can
simply output zero since there is no assignment which can give possible non-zero value. Once we get a
assignment for edges which is simultaneously on the support for all the functions, we can perform an
M, transformation on all the edges with assignment 1. By the definition of ., all the functions are in
&/ after the transformation and the two inverse M, transformations on a edge will also get a function
in «. Therefore, we have an instance with same holant value but all the functions are /. We know
that there is a polynomial time algorithm to compute the holant value. O

It is clear that all the equality with even arity and the two constant unary function Ay, Ay are in
this family .Z. So, we have the following corollary.

Corollary 3.1. There is a polynomial time algorithm for #CSP§(Z).

3.2 Characterization

From the definition of local affine function, it is not easy to check if a given function is in this family or
not. It is not even clear if there exists any interesting new function in this or not. In this subsection, we
give an explicit characterization of this family. First of all, if f2 & .27, then f & .Z. So, we only need to
characterize the functions with f2 & &7, or equivalently functions which are already in the form of .

Theorem 3.2. A function f defined in @ belongs to £ iff H is homogeneous of degree 8 and the
following set of equations hold over Zy relating the data (A,b) for supp(f) and the coefficients cg,

n

Z Haij =0 (VS C]Ir], such that 1 < |S]| <4) (3)
i=1 jeS
and .
Z H a;jbi =cg (VS C[r], such that1 <|S| < 3) (4)
i=1 jes

Note that actually encodes equivalently four sets of equations mod 2: We may state as

Y ai;=0, (V1<j<r))
i=1
Zaijaik =0, (M<j<k<r) (6)
i=1
Zaz‘jaz‘kaie =0, VM <j<k<t<r) (M)
i=1
Zaijaikaiﬁaim =0, VM<j<k<tl<m<r) (8)
i=1

Also is equivalent to

n
Zaijaz‘kaz‘zaim =0, VI<j<k<{<m<r)
=1

since a;; are 0-1 integers.
Similarly encodes equivalently three sets of equations mod 2:

Y oagbi=¢j, (VI<j<r) ©)
i1
Zaijaikbi =cjy, (V1<j<k<r) (10)
i=1
Zai]’aikawbi =cjpe, (V1<j<k<l<r) (11)
i—1

Also is equivalent to
n
> aijairaihi = e (V1< j<k <L)
i=1
Proof. For any integer z, we have z = 0 mod 2 (respectively 1 mod 2) iff 22 = 0 mod 4 (respectively

1 mod 4), and also iff 2* = 0 mod 8 (respectively 1 mod 8). We will substitute the dependent s; (r <
i <mn)in terms of s; (1 <j <r),

T
8 = Zaijsj + b; mod 2,
j=1
and similarly for z; (r <4 < n) in terms of z; (1 < j < r). But the dependent expressions must be
valid modulo 8, since these appear on the exponent of . Hence we get
f- iz (g aigsitbi) (- aijz+bi)*] o o,
as a function in z;, valid for any (s1,...,s,) € {0,1}".
The first simple observation is that the modifier expression has terms of degree at most 4 in x;’s

on the exponent of «, and thus cannot cancel any term of degree greater than 4 in H, which is the
higher order terms in . Moreover, any degree 4 (multilinear) term in (37 ajjz; + bi)* has the form

9

TjXpTeTy, for some 1 < j < k <€ <m < r, and each such term comes with a coefficient divisible by
4! = 0 mod 8. Thus to get a function in &7, there can be no terms of degree 4 or higher in H. Thus

H(z) = Z CiktXjT Ty
1<j<k<t<r

We consider the condition of membership in &/ for the linear terms. The condition is that the
function be expressible as a linear function on the exponent of i = /—1. By the uniqueness of expression
of the (multilinear) polynomial on the exponent of «, this condition is simply that all coeffiients of linear
terms be even. Thus we can derive necessary conditions in Zs. An advatange in working over Zo, is
that we can avoid the 4-th power expression.

If we set (s1,...,5,) = (0,...,0) € {0,1}", the all zero string of length r, then

f- iz [0i(Z oy i +0)*] o o

Here we used the fact that b} = b; for 0-1 valued b; € Z. Computing mod 2, for the linear terms a
necessary condition is that

n
¢ = Zaijbi mod 2, (12)
i=1

for all j € [r]. This is (9). Here we used the fact that (3_7_; aijz; + b;)4 Ej 1 @;jxj + by mod 2.
We can also choose (s1,...,s,) so that a single s;, = 1 and the other s;’s are all zero, then

- aXiml @i+ (T aijai+60)*] ¢ g7

Again deriving a necessary condition by working over Zo, we get

n

¢j = Z(aiﬂ'o + b;)ai; mod 2. (13)
i=1

Subtracting from we obtain both and @

Now we consider quadratic terms. For this purpose we only need to ensure that the coefficients (on
the exponent of a) of all quadratic monomials zjz;, (1 < j < k <) are 0 mod 4. To compute mod 4,
we may use z2 mod 4 replacing z* mod 8 for any integer z. Thus a necessary condition is that, for all
1<i<k<r,

2cjk + Z 2al]azk =0mod 4

and furthermore, for all 1 < jg < r,

n
2¢cjk + Z [(aijo + bi)2(2aijaik)] =0mod 4
i=1
Subtracting the two we get and .

Finally we consider the coefficients of cubic terms in (D%
(<,

= Laijzi+bi)t We get, forall 1 < j <k <

n
4cjpe + Z [bida;jaikai] = 0 mod 8
i=1

10

This gives us

n
Cikt = g a;;aikaieb; mod 2.

i=1

Picking exactly one sj, = 1 and all other s; =0 (for 1 < j <r) we get furthermore (for all 1 < jo <)
n
dcjpe + Z [(aijo + b¢)44aijaikai4] =0 mod 8
i=1

ie., cjre = > [(aijy + bi)aijairai] mod 2. Subtracting from that we get .
Now we prove sufficiency.
By retracing the proof above we have the following

7 aZin[Ches aitb) (Tjmy aieith)?] ¢ g7 (14)
for all S C [r] with candinality |S| < 1. We prove for all S C [r] by induction on |S|. Denote by
Is =3 jes @ij + bi-

Suppose is true for some S C [r] and let jo € [r] \ S, we prove for S'U{jo}. We only need

to prove that
iz [(aijg +1) =T (5 aijzj+bi)*] o oy

Note that
(aijo + Is)* — I& = aij, + 4aij Is(IE + 1) + 6a;5, I3 = aij, — 2aij, I3 mod 8.
For S =0 and S = {jo}, we have
f- iz [6i(Z =y aijzi+0)*] < o7 and £ iz [(@ije o) (5 asjz+bi)*] o oy
For 0-1 valued integers z and 2/, we have (z + 2')* = z + 2/ — 222/ mod 8, so we have
a2z (@i —2ai50bi) (5 oy aija+b0)*] o
Therefore we only need to prove that
i [((@igg =2aij 13)—(aijg —2aijobi)) (F -y aijzj+bi)] c o,

ie.,
i [aigg (0= I3)(Z5—y aijz+bi)*] o oy

But now the expression is on the exponent of i and so we can calculate mod 4, which allows us to

replace (3 7_; aijr; + b;)* by (> =1 @ijrj + b;)2. However i raised to any sum of perfect squares of
linear functions of x1,...,x, is in /. This completes the proof. O

4 Complexity dichotomy theorem of #CSP5
Theorem 4.1. A #CSP5(.%) problem has polynomial time algorithm, if one of the following holds,
F C F C o F C A or F C Z.

Otherwise, it is #P-hard.

11

The algorithm for &, o7, o/ are known and the algorithm for .Z is in Section Corollary In
this section, we prove the #P-hardness part of this theorem, we want to show that if # ¢ &, % € &,
F L Y and F € L, then #CSP§(F) is #P-hard. We have one function from the complement of
each tractable class, and we prove that, when putting these four (not necessarily distinct) constraint
functions together they define a #P-hard problem. Starting from these functions, we manage to obtain
other functions outside of the respective tractable classes, but with some specific properties.

Finally after we have gained a sufficiently good control on these functions we can corner the beast.

This complexity dichotomy theorem about #CSP§ generalizes the known complexity dichotomy
theorem about #CSP (Theorem , and its proof uses this known theorem in several places.

4.1 Notations

In this subsection, we further introduce a number of definitions and notations, which shall be used in
the proof.

Definition 4.1 (Bundle and bundle type). Suppose f has affine support of rank r with {x1,...,z,} as
a set of free variables. We use all non-empty linear combinations 22:1 djx; (d;j € Zg, not all zero) of
T1,...,T, as the names of bundles of f. The type of each bundle is a possibly empty multiset of “4”7’s
and “=7’s, and is defined as follows: For every input variable x; (1 < k < n) of f there is a unique
bundle named 22:1 djxj such that on supp(f), xy is either always equal to 2;21 djz; or always equal
to iy djzj+1 (mod 2). In the former case we add a “+”, and in the latter case we add a “~” to
the bundle type for the bundle named Z;Zl djz;, and we say the variable xj, belongs to this bundle.

All input variables are partitioned into bundles. The number R of non-empty bundles is called the
essential arity of f, andr < R <2" — 1.

We can list a function’s input variables, by listing all its non-empty bundles followed by the bundle
type. For example, f(z1(++),z2(+), (z1 + 22)(——)) has rank 2, essential arity 3, and arity 5.

Definition 4.2 (Odd and even bundle, consistent and opposite bundle). If the cardinality of a bundle
is odd (resp. even), we say it is an odd (resp. even) bundle. For an even bundle, if there are even (resp.
odd) many “+7 in its type, we say it is a consistent (resp. opposite) bundle. Obviously, a consistent
(resp. opposite) bundle also has even (resp. odd) many “ —", since it is an even bundle.

An empty bundle is a consistent even bundle. Equivalently, if a bundle is odd or opposite, then it is
not empty. When constructing some function by a gadget, the bundles of the function are usually the
union of some original bundles, after some possible flipping, where a flipping changes all “+ 7 in a type
to “—7 and changes “—" to “4” at the same time. If we merge two bundle types o and 3, we get the
union of two types aUB. Obviously, evenUeven = even, oddUeven = odd, oddUodd = even. Similarly,
consistent U consistent = consistent, consistent U opposite = opposite, opposite U opposite = consistent.

Definition 4.3 (Essential function). Given a function f with affine support, if we replace each (non-
empty) bundle of variables by just one variable as the bundle name, keeping the compressed function
unchanged, we get the essential function f of f.

For example, the essential function of f(z1(4++), z2(+), (z1+22)(——)), f(z1,z2, (x1 +22)) has arity
3, which is the same as the essential arity of f. Note that in this example, the two variables that are
both equal to x1 + z2 + 1 on supp(f) have been replaced by one variable which equals to z1 + z2 on
supp(f).

If each bundle of a function f has the same type a, for example, f(x1(a),z2(), (z1 + 22)(a)), we
also denote it as f(z1,z2, (z1 + 2))(a) through its essential function. For example, f(++) denotes

12

a function all whose bundles are (++). Sometimes, f’s bundles have different types, we use f(x) to
denote f. If all bundles of a function are consistent, we say it is a function of the form g(cc).

We define two type operations. The first operation is called triple. In a type multiset, triple can
replace a single + by +++, or replace a single — by — — —. The second operation is called collation.
Collation can remove ++ or —— from one bundle type, as long as the bundle is still non-empty after the
removal. The type operations do not change the essential function. They do not change the properties
that whether a type is empty, odd, even, opposite, consistent.

Suppose we can use f and (=4) to construct gadgets. When connecting one input variable of f
to (=4), we get 3 copies of this variable as additional inputs of the new function. This implements
the triple operation. We can also connect two ++ or —— in the same bundle to make them disappear
(provided the bundle is still non-empty after the removal). This implements the collation operation. In
proving #P-hardness (but not when designing algorithms), we can always do these operations on types.
In this sense, an odd bundle is either (4) or (—), and a consistent bundle is either empty or (+4), or
(—=—), and an opposite bundle is (+—).

F5-_1 denotes the set of functions of rank r» whose number of bundles achieves the maximum 2" — 1
and each bundle has type (+). We use a super script &/ or « to indicate the function or the function
set is contained in 7 or &/'*.

Suppose for each function in F, all bundles are (+), we define F(++) = {f(++)|f € F'}, and define
F(4—) similarly. Define F'(x) to be the set of functions f(x) with f € F' with any bundle structure.
Define F'(+) to be just F' where every function still has all bundles of type (+). For example, F¢(+—)
is the set of functions with rank 3 and 7 bundles each with type (+—) whose essential functions are in
o>

Definition 4.4. Given a function f(z1,z2,...,zy), we define an arity 2n function f++, such that
(l’l,yl,$2,y2, s ,xnayn) € Supp(f++) Zﬁ Lj = Yj, J=12,...,n and (1'1,1‘2, . -;xn) € Supp(f); and
[+, y1, 20,92, - Tny Yn) = (21, 20,000, T0). o o

Define o/ ++ = {f++|f € &}, where denotes complement. Define P++ = {f++|f € #}.

Because the binary DISEQUALITY function is in 7, and 7 is closed under gadget constructions, it
can be used to flip input variables, and 7, it is not hard to see if f & o7, f(cc) € &/ ++.
Given a function f, we define the function f? pointwise by f%(z) = (f(x))?. Define % as the function

with the same support as f, but on supp(f), %(x) = ﬁ

Lemma 4.1. #CSP5({f*++}) <t #CSP5({f}).

Proof. We take two copies of f, and connect 2 inputs of a copy of (=4) to each pair of the corresponding
variables. The new function is f2++. O

4.2 Regularization Lemmas

Assume F € P, F € o, F € &% and F ¢ £, the high level idea to prove that #CSP§(.%)
is #P-hard is as follows. We take one function outside each tractable family and prove that putting
these four (not necessary distinct) functions together makes a #P-hard problem. If we only have four
generic functions, it is difficult to prove anything. So we wish to regularize and simplify these functions,
while maintaining the property that new functions are still outside the respective tractable families.
By forming loops and by pinning individual variables we can reduce the arity, or more precisely, the
essential arity of the functions. However in fact the more important parameter that we will try to reduce
inductively is the rank of the function. The hope is that when the number of (free) variables is small,
the functions are sufficiently easy to handle, as they sit in a space of smaller dimension. This is true

13

for symmetric constraint functions. However, in the asymmetric setting, they are still too complicated
even for functions of small rank. In this section, we prove some useful regularization lemmas, that allow
us to further regularize the functions at hand.

We treat the following generic situation. In all the lemmas in Subsection |4.2| we assume there is a
constraint function set .% that satisfies the following conditions:

(1) Any function in .% has affine support;

(2) # contains the pinning functions Ay and Ay;

(3) .# contains all EQUALITIES of even arities and (=2)(+—) (note that this function is the
same as [1,1](++ — —));

(4) Z is closed under gadget constructions, i.e., the signature of any .#-gate is in .Z;

(5) 7 is closed under reciprocal, i.e., if f € %, then % € .7, where % is defined above; and
(6) For any function f which has affine support, the two bundle type operations do not
change whether f is in .% or not. (This is a consequence of (3) and (4).)

Property (6) is a corollary of (3) and (4). For example, if a function f(+ — —) & %, then after
applying collation operation on each bundle, we get a f(+) ¢ #. We prove this by contradiction.
Assume f(+) € %, if we connect [1,1](++ — —) € .Z to each bundle, we get f(4+ — —), which is in F#
by (3) and (4).

These properties hold for o7, &7* and Z. In the statements of Lemma to [4.7] we make the
implicit assumption that .% satisfies these conditions.

Starting from a constraint function f outside of a tractable family, we will generically try to reduce
the rank by pinning at a variable (and all other variables in the same bundle consistently), while
maintaining the property that the function is still outside of a tractable family. Note that pinning at
any variable does reduce the rank. (Every variable can be a member of a set of free variables, but not
every subset of 7y variables can be a set of free variables.) We get stuck if pinning any variable (and
its bundle) of f produces a function in the tractable family. The following lemmas turn this seemingly
unfortunate situation into a positive outcome, by using this to regularize the given function outside of
a tractable family.

Assume we have a function with rank 2 or 3 outside the respective families &, &% or £, the
following lemmas show how to get a function still outside the respective families but with very regular
bundle types. We can first regularize so that every bundle has the same parity. If all bundles are even,
we can further regularize their bundle types to be either all consistent or all opposite. If all bundles are
odd, we can further regularize the support space to be a linear space (not just an affine space), which
means all bundles are (+).

Lemma 4.2. Suppose f & % has rank 2 and pinning any variable of f produces a rank 1 function in
% . Then we can construct a rank 2 function g, such that g & %, and either all its 3 bundles are odd,
or all its 3 bundles are non-empty even, or it has exactly 2 non-empty even bundles.

Proof. After picking free variables x1 and x3, we have up to three bundles, named x1, x2, and z1 + .

First suppose the bundle x; 4+ x2 is empty. The bundles z; and x2 are certainly both non-empty.
We will make both bundles x; and z3 non-empty and even. If the bundle z; is odd (which we may
assume it consists of a singleton variable z1), we can pin appropriately on the xo bundle to get a unary
function u(y) of rank 1 (with a singleton bundle y). Use a gadget composed of one copy of f, one copy
of u and one copy of (=4). Use two variables of (=4) to connect z; of f and y of u, The other two
variables of (=4) are left as two input variables of the gadget. We effectively made the singleton bundle
x1 to become two equal variables as an even bundle (++).

Formally, we construct a function h(x), such that h(z1,z2) = >, . f(21,22) u(y)-(=4) (21,9, 21, 21).
The z; bundle of h is even, and the x9 bundle of f is unchanged.

14

We claim that h ¢ .#. For a contradiction suppose h € .#. We construct a gadget by connecting
the variable of % to one input variable in the z; bundle of h. Because u and % are in %, we have
f(z1,22(%)) = 32, h(21(++), w2(%)) - 1(z1) € Z, where the sum is over one variable of the bundle
z1(4++) in h, equated with the only variable z; of % A contradiction. Hence, h ¢ 7.

Similarly, we can change the z2 bundle to an even bundle, without changing the x; bundle, keeping
out of .Z. Therefore we can get a function g &€ . with exactly 2 non-empty even bundles.

Now suppose the bundle 1 + z2 is not empty. Then it is either odd, or it is even but non-empty.
If it is odd, then either all three bundles named x1, x5 and x1 + x2 are odd, in which case we are done,
or at least one of the bundles named z7 or x3 is even (and non-empty because of free variable status).
Without loss of generality suppose the bundle x; is even. Now we pin the xo bundle appropriately, then
the bundles of x1 and x1 4+ x2 are merged, creating a unary function u of rank 1 with an odd bundle.
Use this u (and (=4)) we can again change all three bundles of f to be even, just like before, resulting
in a rank 2 function g ¢ .#.

If the bundle x1 + x5 is even and non-empty, then either all three bundles named z1, x2 and x1 + x2
are even, in which case we are done because the bundles named x;, x2 are non-empty, or at least one
of the bundles named x1 or x5 is odd. Without loss of generality suppose the bundle z; is odd. Now
we pin the xo bundle appropriately, then the bundles of x; and x; + x2 are merged, creating a unary
function u of rank 1 with an odd bundle. The rest of the proof is the same. O

We have several more lemmas in the same vein. Two of them are still about rank 2, and the
remaining three are about rank 3. The construction method in Lemma of using (=4) to merge two
original bundles into a new bundle and the argument that the new function is not in %, is repeatedly
used in the following five lemmas. For simplicity of the statement, we just say which bundle is merged
to which, by setting which two variables to be equal. For the rank 3 case, we often merge 3 pairs of
bundles at the same time, so we need to consider the support structure is not affected.

Lemma 4.3. Suppose [& % has rank 2 and pinning any variable of f produces a rank 1 function in
Z . If each bundle of f is even, then we can construct a rank 2 function g & F, such that either all
its 3 bundles are opposite, or all its 3 bundles are non-empty consistent, or it has exactly 2 non-empty
bundles which are both consistent.

Proof. The proof is similar to Lemma[£.2l We replace “odd” by “opposite”, and “even” by “consistent”.
O

Lemma 4.4. Suppose f & % has rank 2 and pinning any variable of f produces a rank 1 function in
F . If each bundle of f is odd, then we can construct a rank 2 essential arity 3 function g(+) ¢ F.

Proof. By being odd, all 3 bundles of f are non-empty. By the collation bundle type operation we may
assume each bundle of f has only one variable, and so f has arity 3. We pick two variables as free
variables. If the dependent bundle of f has type —, i.e., the input variables of f are x1,x2,x1 + 22 + 1,
then we pin 2 to 0 to get a rank 1 function u(+—). Then we merge the bundle of u(+—) to the z;+xz2+1
bundle of f by equating the two — variables, This produces the desired function g(+) &€ Z. O

We go on to the second batch of lemmas about rank 3 functions.

Lemma 4.5. Suppose f & % has rank 3 and pinning any variable of f produces a rank 2 function in
. We can construct a rank 8 function h, such that h € %, and either all its 7 bundles are odd, or all
its 7 bundles are non-empty even, or it has exactly 3 non-empty even bundles.

Proof. Because the rank of f is 3, there are 3 non-empty independent bundles, named z1,xs,z3
respectively. We give a list, which covers all possibilities and each possibility ends with a gadget
realizing a function as required by the conclusion.

15

1. All other 4 bundles named x1 + 2, x1 + 3, 2 + x3 and x1 + T2 + T3 are empty.

(a) All 3 non-empty bundles are even. Then we take f itself.

(b) There is an odd bundle among 1, z2, z3.

We pick one odd bundle and pin the variables in the other two bundles, and get a rank 1
function u. By the condition, v € .%. For any odd bundle of f, we merge u’s bundle with this
bundle of f. Just as what we did in Lemma [£.2l We get a function with exactly 3 non-empty
even bundles.

2. All 7 bundles are non-empty.

(a) All 7 bundles are even. We take f itself.
(b) All 7 bundles are odd. We take f itself.

(c) At least 4 bundles are even, and at least one bundle is odd.

No 4 nonzero vectors of Z3 can be contained in a 2 dimensional subspace. So there are 3
linearly independent vectors. Whether f € .# is independent of the choice of free variables
for its support. So among the even bundles, we can pick 3 linearly independent bundles
and name them x1,z9,xs respectively. Under this renaming of the variables and bundles,
T1,T9, T3 are even bundles.

i.

il.

Bundle x1 + 9 is even.

No matter which bundles of the rest 3 bundles are odd, we can always pin to get a rank
2 function ¢ in .% containing 3 non-empty bundles of different parity types. Indeed, if
x1 + x3 is an odd bundle, we can pin z1, and the bundles of z3, 1 + x3 are merged
producing an odd bundle, and the bundles of x5, x1 + x2 are merged producing an even
bundle. Similarly if x5 + x3 is an odd bundle, we can pin z5. If both z1 + x5 and z2 + x3
are even bundles, then x1 + x5 + x3 is an odd bundle, then we pin x3. Go on to pin g to
get a rank 1 function u, which has one odd bundle. Using u, we can change all bundles
of f into even bundles.

By symmetry, the proof is the same if either bundles x; + z3 or x3 4 x3 is even.

Bundle z1 + x5 + x3 is even.

We may assume the 3 bundles x1 + x2, x1 + 23, 2 + x3 are odd bundles. We pin z3 to 0,
to get a rank 2 function g. All 3 bundles y1,y2,y1 + y2 of g are odd. We will merge ¢’s
bundles y1,y2,y1 + y2 to f’s bundles x1 + 2,21 + x3, T2 + x3 respectively. Notice that
the same linear dependence holds for these the respective three bundles. To effect this
merging we make one variable from the bundle x; + z2 equal to one variable from the
bundle y; utilizing (=4). Then we make one variable from the bundle x; +x3 equal to one
variable from the bundle yo utilizing another (=4). The last pair of bundles are already
merged automatically. To avoid introducing extra linear restriction on the support of f,
we do not use any superfluous (=4) to merge this last pair of bundles. We get a function
h of rank 3 with all 7 bundles being non-empty and even.

(d) At least 4 bundles are odd, and at least one bundle is even.

The proof is parallel to the case 2 (c), except that in the last case it ends with a function h
of rank 3 with all 7 bundles being odd.

3. There is a non-empty bundle among z1 + x9, z1 + x3, x2 + 3,21 + x2 + x3. (This is logically the
complement of case 1. We will use case 2 as a special subcase and reduce this case 3 to case 2.)

16

We can pin a bundle to get a rank 2 function g(y1, y2, y1 + y2)(*), whose 3 bundles are not empty
and it is in .%. Similarly, we can merge the z1 and y; bundles, and merge the z2 and g2 bundles,
and then the z; 4+ x2 and y; + y2 bundles are merged automatically, to make the x; 4+ x2 bundle
not empty, keeping the function outside of .%. If the bundle x1 + x2 + x3 is empty, we can merge
the bundle y; to x1, and the bundle y» to x2 + x3, and then automatically the bundle y; + y2 to
1 + x2 + x3.

We get a rank 3 function outside of .%, with 7 non-empty bundles. Then, we go to the proof in
case 2.

O]

Lemma 4.6. Suppose f & F has rank 3 and pinning any variable of f produces a rank 2 function in
F.

If each bundle of f is either consistent or opposite, then we can construct a rank 3 function h & F,
such that either all its 7 bundles are opposite, or all its 7 bundles are non-empty consistent, or it has
exactly 3 non-empty bundles (with linearly independent names) which are consistent bundles.

Proof. The proof is similar to Lemma[.5] We replace “odd” by “opposite”, and “even” by “consistent”.
O

Lemma 4.7. Suppose f & F has rank 3 and pinning any variable of f produces a rank 2 function in
F . If each bundle of f is odd, then we can construct a rank 3 function h(+) & F.

Proof. By being odd, all 7 bundles of f are non-empty. Using the collation operation on the bundle
types, we can assume all bundles of f are singletons. We pick 3 independent bundles of f as free
variables, so they are given type x1(+), z2(+), z3(+).

We define condition (F):

There are four bundles which contain a common free variable x; in their names and an odd
number of them are of the (—) type.

Suppose condition (F) holds. Such four bundles correspond to a face (subcube) {0,1}? of the form
xj = 1 in the cube {0, 1}3. If we pin the other two free variables to 0, these four bundles are merged
into a single bundle of 4 variables, and (+) type (respectively, (—) type) variables in these four bundles
remain (+) type (respectively, (—) type). So there is an odd number of (—) type variables among the 4
variables. After collation, we get a rank 1 function u(+—) in .#. Using u(+—), we can change all (—)
type variables of f to (+) type, keeping it outside of .%. This proves the lemma under condition (F').

If the bundle 1 4z + 3 has type (—), consider the three faces (subcubes) {0, 1}? of the form z; = 1
in the cube {0, 1}3. If we assign a number 1 € Zy for a (—) type at a vertex of {0,1}3, and 0 € Z, for a
(+) type, and let s; be the sum in Zy over the face corresponding to z; = 1 and let s = Z;’Zl sj in Zso,
then the value 1 at x1 +x2+x3 contributes 3 times mod 2 to s, each value at a point of Hamming weight
two contributes 2 times mod2 (thus 0, regardless of its value), and the value from z;(+), z2(+), z3(+)
are all 0. Hence s = 1 mod 2, and therefore some s; = 1 mod 2. Thus condition (F) holds. The lemma
has been proved in this case.

In the following we can assume the bundle z1 + z2 + x3 has type (4), and condition (F) does not
hold. Then s; = s; = s3 = 0 mod 2 implies that all three bundles at x1 + x2,z1 + z3, 22 + x3 are
of the same type, all (+) or all (—). If they are all of type (+) then we are done. Suppose all three
bundles at x; + z2,x1 + x3, x2 + 3 have type (—). We can pin one free variable to 0, and get a function
of rank 2 and essential arity 3. This function has type (+—) in all three bundles y1, y2, y1 + y2, and
we will denote it as g(+—). Now we merge the 3 bundles y1, y2, y1 + y2 of g(+—) to the 3 bundles

17

x1 + m2, 1 + x3, T2 + w3 of f respectively, by equating the (—) variables in each bundle pair (utilizing
a copy of (=4) as by now the standard way). Notice that the three bundles of g satisfy the same linear
dependence as the bundles x1 4+ x2, z1 + x3, x2 + x3 of f. This changes the types of these three bundles
of f from (=) to (+ — —), and then we can further change them to (+) by collation. O

4.3 2

In this subsection, we assume .# ¢ . Then there is a function f € F — &. Utilizing this f, we
construct some function h(++) having the property that its essential function h ¢ &2. Formally we
have the following lemma.

Lemma 4.8. Suppose .F ¢ &?. Then we can construct a function h-++ € P++, such that
#CSPS({h++} U.7) <p #CSP5(%).

Part of the proof of Lemma [4.8| can be stated as the following arity reduction lemma about 2.

Every function g € & has a decomposition as a product of functions over disjoint subsets of variables,
where each factor has support contained in a pair of antipodal points: There exists a partition X =
{z1,...,20} = U?:l X, and functions g; on X; such that g(X) = ¢(Xi,...,X;) = H?:l 9j(X;), and
for all 1 < j < k, supp(g;) C {ay, a;} for some oy € {0, 1}l

Lemma 4.9. If f & 2, but f?> € &, then we can pin f to a rank 2 function h such that its essential
arity is 2 and its compressed function h is a binary function with h & 2, and h* € 2. Furthermore,
all 4 values of h are nonzero.

Proof. Since supp(f) = supp(f?), f has affine support. Let g = f2 € £, then there is a decomposition
9(X) = H§:1 9j(X;), where each g; evaluates to zero except at possibly a; and &;. A consequence of
this decomposition is that supp(g) is a direct product of affine spaces S; with the special property that,
each S; has at most one free variable, and if there is one free variable in X; then all variables X; are in
the same bundle. So there are no bundles that correspond to sums of two or more free variables.

Clearly g;(a;) and gj(cj) cannot both be 0, for otherwise ¢ is identically 0, and so is f. Then
f € &, a contradiction. Suppose for some j, one of g;(a;) or g;(c;) is 0. Without loss of generality
suppose j = 1, g1(a@q) = 0 and g1(c;) # 0. Then the function f/(Xa,...,X5) = fX17(Xy, ..., Xz)
has the property that f' ¢ 2 but (f')? € £. The latter claim is obvious since (f)? = (f?)¥1= =
g1(c1) - [lo<y<p ge- For the former claim, if f' € &2, we can define fi(X;) = 1 at X; = a; and 0
otherwise, then f(X1,...,Xz) = fi(X1) - fX17% = f1(X1) - f', because f is zero for all assignments
unless X7 = 3. This shows that f € &, a contradiction. Hence we can continue the proof inductively
on the function f’.

Therefore we can assume that each g; has support supp(g;) = {¢;, a;}.

For each 1 < j < k, define f;(X;) = /g;(X;). This is a pointwise definition by taking a square root

value (of arbitrary sign). Then (H§:1 fj>2 =g=f2
Now we define a sign function S : {0,1}* — {+1, —1}. For (y1,...,yx) € {0,1}*, let
(X, .., Xk)
15, £i(X5)

where X; = «; if y; = 1 and X; = @; if y; = 0. Note that since supp(g;) = {¢;, @;}, there is no division
by zero and S is well-defined. Then

Sy, .- yk) = (15)

k
FX1, o X)) = S (Xa), - oue(Xw) - T (X)) (16)
j=1

18

for all X = (Xy,...,X), where y;(-) is a function which is defined as y;(X;) = 1 if X; = a; and
y;j(X;) = 0 otherwise. Note that in both sides are zero unless for all 1 < j < k, X; = o or aj,
and in that case follows from .

Because S is a £1 valued function, there is a multilinear polynomial p(y1,...,yx) € Zaly1,- - -, Yk
such that S(y1,...,yx) = (—1)PW1-¥k) If deg(p) < 1 then S is factorizable as functions on each y;
separately, and consequently f € & by , a contradiction. Hence deg(p) > 2.

Consider a monomial with minimum degree among all monomials of degree at least 2. Without loss
of generality let it be y1y2 ...y, where £ > 2. Now, for all £ < j < k, pin X to &, which corresponds to
setting y; = 0. Any monomial in p that has a factor y; for some j > /is annihilated. Any monomial that
is a subproduct of y1ys ...y, (including y1ys . .. ye itself) is unaffected. By the minimality of y1y2 . . . ye,
all other remaining monomials must have degree at most 1. Now, for all 2 < j < ¢, further pin X; to
aj, which corresponds to setting y; = 1, we reduce p to ¢y + c1y1 + cay2 + y1y2 for some cq, c1,co € Zs.
The compressed function h of the corresponding rank 2 function h obtained from f by pinning has

matrix A <i _C;b>, with nonzero A, a,b. As noted earlier, the bundle named x1 + x5 is empty; this is
a property of supp(f) = supp(g). Hence h has essential arity 2. Clearly h ¢ &, but h? € 2. O

Proof of Lemmal[{.§ Starting from any f € % — 2, if f? & 2, then we can just realize f2++ by
Lemma 411

Now we assume f? € &. By Lemma we can get a function h of rank 2 and essential arity 2,
such that its compressed function h € 2, and h? € 2.

1 a . . .
Ignore a nonzero constant we may assume h = (b , with nonzero a,b,c. From the pointwise
c

2
square function h? = <Z)12 Z2> € P, we get ¢ = ab, and thus ¢ = —ab because h & 2.

There are two cases. One case is that a® # 1 or b% # 1. Without loss of generality, assume a® # 1.
We can construct a gadget by taking two copies of h, and connect their respective variables within
the bundle z9. A variable with a (4) (respectively, a (—)) label is connected to the corresponding
variable in the other copy of h with the same (+) (respectively, (—)) label. This produces a function
with two bundles (corresponding to the bundles both named z; in each copy of h). This function

2 2
is denoted as g. The compressed function of g is ((1) C;b> <61L I;b> = <b(11+22) bg((lllc;g)))
By Lemma we have #CSP§({g*++} U.#) <1 #CSP5(#). The compressed function of g*>++ is

(1 + a2)2 b2(1 o a2)2
<b2(1 _ a2)2 b4(1 4 a2)2
function does not belong to &. Hence ¢°4++ € P ++.

The other case is that a® = b% = 1. Suppose h is h(z(c),y(7)), where o (resp. 7) is the type of
bundle x (resp. y). We pin the input bundle x to get [1, a](7) (note that the bundle x; + x5 is empty.)
We pin the input bundle y to get [1,b](c). Put them together we can get a function s = s(z(o), y(7)),

). By checking its determinant we conclude that if a® # 1 then this binary

b ab
We put one copy of h and 7 copies of s together, to get a function whose inputs are z;(o),y;(7),
j=1,2,...,8 For each element in the type o, say +, we connect the 8 variables z;, j = 1,2,...,8,
by an EQUALITY (=19) of arity 10. The 8 variables become 2 variables, and the eight z; bundles are
merged into a bundle z(c U). We handle y;(7), j =1,2,...,8, similarly. At last we get a function in
inputs (z(c Uo),y(r UT)). It can be expressed as t++, where neither t(xz(o),y(7)) nor its compressed

: 1 a® o1y, .
function <b8 —a8b8> = (1 _1> is in Z.]

19

with essential and compressed function § = s = [1,b] ® [1,a] = <1 “)

4.4 o
Lemma 4.10. Let f & o. In #CSP5({f}), we can realize a function in one of the following sets:
o o ++,
o IT, F{'(+-),
o F5(+), F5'(+-),
o F7(+), Ff'(+-).

Proof. If 2 & a7, we can realize f?>4++, which is a function in o/ ++.
Now suppose f? € o/. Ignoring a nonzero constant factor, we can write f more explicitly as
f _ Supp(f) . aL(m)+2Q(z)+4H(z) (17)
where L(z) = >77_, cjz; is a linear function, Q(x) = > 1. <, cjkTjak is a quadratic (multilinear)
polynomial, and H(z) = Zl§j<k<€§r CikeXjTrxy + - - - is a (multilinear) polynomial with all monomials
of degree at least 3, where r is its rank.

By the uniqueness (in the sense that all coefficients c;, ¢, and cjr, are integers mod 2) of this
polynomial expression in the exponent of «, any f defined by the expression in is in & iff all the
coefficients of the 3 polynomials L, Q and H are even. Because f & <7, there is an odd coefficient.

If one coefficient of L is odd, say c¢1, we pin all free variables to 0 except x1, to get a rank 1 function
¢ not in /. It is not hard to see, after a collation if necessary, ¢ € F{* U F{*(+—) U Ff*(cc), while
F(cc) C o/ ++.

If one coefficient of @ is odd, say ci2, we pin all free variables to 0 except x1, s, to get a rank 2
function ¢; not in . If we can pin ¢ to get a rank 1 function not in &7, we fall into the previous case.
Hence, we can assume the conditions of Lemma and [£.4] are satisfied. By Lemma from ¢
we can construct a function g, all bundles of ¢» are even or all bundles of g9 are odd.

If all bundles of g2 are odd, by Lemma we go on to get a function g(+) ¢ <. If the linear
terms L, in the corresponding polynomial for ¢ of ¢(+) contains an odd coefficient, we can pin to get a
rank 1 function and fall into lower rank case. Hence, we assume all coefficients of L, are even. Suppose
the compressed function g of ¢(+) is acrEiteare ez Then ¢ = ¢ = 0 and ¢19 = 1. If we apply
a M, transformation to ¢(+), the compressed function becomes a1 72 H@1+2)? | qerz1teratdcipzizs
alartzit(eat2)zat2(ea—1)z122 - which is a function in «/. Note that, for 2; = 0,1 € Z, the value
r1 + x9 mod 2 cannot be calculated as a linear term on the exponent of «, but can be calculated mod
8, and thus we used the expression (21 + z2)3, since 21 + x2 = 0,1 mod 2 iff (x1 + 22)® = 0,1 mod 8.
Hence, g(+) belongs to the set Fy'.

If all bundles of g2 are even, we apply Lemma [£.3] to make all bundles either consistent or opposite.
If all bundles are opposite, by the same analysis of the compressed function, we get a g(+—) € F5'(+—).
If all bundles are consistent, by the same analysis of the compressed function, we get a g(cc) of essential
arity 2 or 3, with ¢ € 7. Hence, q(cc) € &/ ++.

The last case is that there is an odd coefficient in H in . Suppose the monomial M has the
minimum degree, among all monomials in H with odd coefficient. We pin all free variables which are
not in M to 0, and pin the variables in M to 1, except 3 of them, to get a rank 3 function hy.

Similarly, by Lemma [4.7) and from hq, either we get functions not in &/ of smaller rank
and fall into the solved two cases, or we get one of the following rank 3 functions: an essential
arity 7 function h(+), or an essential arity 7 function h(+—), or an essential arity 3 function
h(cc), or an essential arity 7 function h(cc). For all cases the analysis of the compressed function

20

h = qamtereterst2enret2asnirst2esrars+Aazsnirars g the same. (The fact that h has such an
expression, namely the coefficients of degree 2 terms are all even and the coefficient of degree 3 terms
is divisible by 4 ultimately follows from the expression for f.) Similar to the above proof, we can
assume all coeflicients in h are even, except that cio3 is odd. h & &7, so in the last two cases, we get a
function in </++. For the first two cases, we only need to prove a M, transformation applied to the
essential function h, will change h to a function in F;”{ . The compressed function of M7 - his

P teetest(z +a2)3+(w1+23)3+(z2+a3) 3+ (21 +T2+w3)? | h
alcitdzit(catd)zo+(cs+4)es+2(c12+2)z1224+2(c13+2) w123 +2(c23+2) w23 +4(C123+1) T1 2273
)

which is a function in &7, since the exponent has the form L'+2Q’+4H’, and all coefficients of L', Q’, H'
are even. (As in these two case, the essential arity 7 function is either h(+) or h(+—), the holographic
transformation is M&7 on the essential function h.) O

Remark: We remark that this form for the compressed function of M7 . h can be derived as follows:
The values of x1, x9, z3 are all 0-1 integers, and the transformation produces a factor « for each variable
iff the variable takes value 1. For a variable such as x1 + x9 or x1 + xo + x3, one has to be careful
to remember that such a linear expression is in the sense of Zs; it is illegitimate to simply substitute
the linear expression on the exponent of «, which can only be computed as an integer mod 8. For
an expression such as x; + 2 the integer value can be only 0, 1 or 2, in which case (z; + 22)% mod 8
keeps the meaning of the 0-1 value of 1 + x2 mod 2. For z; + x2 + x3, the value could be 0, 1, 2
or 3, then we must use the expression (z1 + 22 + x3)* mod 8 to keep the meaning of the 0-1 value of
x1 + x2 + x3 mod 2. One can calculate the end result such as the coefficients of x1x9 or x1xox3 by
noticing that the modifier expression is symmetric in x1,xo,xr3 and, e.g., the modifier coefficient for
T1T9x3 i8S (3)3! = 36 = 4 mod 8.

4.5 o>

By definition, a function f & & iff M, - f & o, where n = n(f) is the arity of f. Let f' = M®", - f.
To derive the corresponding results for &/ in Lemma we use f’ to repeat the proof of Lemma
However we should be careful in justifying the steps in gadget constructions.

One primitive of gadget construction is pinning. Because M, is diagonal, f*i=¢ € o iff f*i=¢ € /¢,
for ¢ = 0,1. Thus pinning to f’ can be replaced by pinning directly to f.

The other primitive of gadget construction is merging two bundles, where the basic operation is to
connect by (=4) two inputs (one is from say f’ and the other is from some ¢’ which may be obtained
from f’ by pinning). In this gadget, (=4) is separated by two M_,-1 from touching f and ¢ directly.
But if we consider there is a (=2) on the edge, then the new function on the edge is a symmetric binary
function with matrix (M,-1)T M, -1 which represents a function in . Therefore we can directly argue
whether the gadget using transformed function f’ results in a function in &/ iff the same gadget using
the untransformed function f results in a function in 7.

We conclude that using f’ to repeat the proof of Lemma we get some function through some
gadgets composed of f’, (=4) and pinning functions. In the end we get some equivalent gadgets which
are new gadgets composed of f, (=4) and pinning functions, which are transfored versions under M, 1.

To get the form of these functions of the new gadgets, we just do M, transformations to the outcomes
of Lemma [4.10)

Lemma 4.11. Let f & /. In #CSP5({f}), we can realize a function in one of the following sets:

o J++,

21

o F{, F{(+-),
o By (+), F§(+-),
o I (+), F(+-).

The the expressions in Lemma are those expressions in Lemma under the transformation
by M,. For &/ ++, the two copies of M, produce a modification by a factor 1 or a? = i (if the variable
for a bundle name is 0 or 1, which appears twice as equal variables in the bundle by the (++) type). The
unary function [1,7] is in 7. Therefore this modification does not affect the (non)membership for its
essential function in 7. As well, the expressions F{*(+—), F5'(+—) and F(4+—) from Lemma are
not changed to the corrresponding expressions in Lemma because for the (+—) type the aggregate
modification on the two variables in a bundle is always «, which becomes a constant factor. The
expressions F*, F§(+) and F$(+) do get changed to F, Fy’(4) and F¥(+) respectively.

46 <

Lemma 4.12. If we have a rank 1 function f ¢ £, in #CSP5({f}) we can realize a function in one
of the following sets: o/ ++, F{, F{, F{ (+-).

Proof. If 2 & a7, we can realize f?>4++, which is a function in .7 +4. Now assume f? € .

We discuss the cases according to the type of the unique bundle of f being odd, or consistent, or
opposite.

Suppose the unique bundle of f is odd, (by equation , f € £ no matter what is the integer
coefficient ¢1), we change this bundle type to a singleton by the collation operation, to get a [1,] €
FeUFY.

Suppose the unique bundle is consistent. By being of rank 1, the bundle is named for a free variable
and thus non-empty. Because f ¢ .2, and equation is satisfied, it follows that equation @ must
have been violated. Being consistent, the left hand side of equation @D is 0 mod 2. Hence, ¢; = 1.
In this case, after some collation operations we get g = [1,a“](cc) and ¢; = 1. Because [1,a%] & 7,
g€ o ++.

Suppose the unique bundle is opposite. In particular the bundle is even and equation is satisfied.
Because f ¢ £, equation @D must have been violated. Being opposite, the left hand side is 1. Hence,
c1 = 0. In this case, we get [1,a](+—). Since ¢; = 0, we have [1,a%](+-) € F{ (+-). O

Lemma 4.13. If we have a rank 2 function f ¢ £, in #CSP5({f}), either we can pin to get a rank 1
function not in £, or we can realize a function in the sets o ++ or F§/(+-).

Proof. If f? & a7, we can realize f?4-+, which is a function in &/++. Now we may assume f? € <.
If any pinning of f always gives a function in .Z, we can apply Lemma and to get a rank
2 function not in ., such that all 3 bundles are (+), or all 3 bundles are opposite, or all 3 non-empty
bundles are consistent, or there are exactly 2 non-empty bundles which are consistent.

Let the compressed function be q@1#1+c222+2¢122122 - We consider the following cases.

1. All 3 bundles are (+).

The matrix (a;;) in equations and is [é [ﬂ, and all b; = 0 since they are all of type (4). If
c1 is odd, then we can pin x3 = 0. The resulting rank 1 function violates equation @ since the
corresponding matrix is just [{], and it has bundle type (++) and so both b; = 0. If ¢; is even,
then we can pin x2 = 1. The resulting rank 1 function also violates equation @ since it has the
same matrix [1], but it has bundle type (+—) and so the b vector is (0,1)T. Hence we get a rank
1 function not in .Z.

22

2. All 3 bundles are opposite.

10
10
The matrix (a;;) in equations (3 and is |91 |. So equations and (H) are satisfied. The six
1
-)-

b; are alternately 0’s and 1’s due to type (+ If ¢; or cg =1, then we can pin to get a function
not in .Z. So suppose ¢; = cg = 0. Then equation @ holds. Since f ¢ £, equation ({10) must
have been violated, and we get ¢j2 = 0. This means that we have a function in Fy” (+—).

3. All the bundles are consistent.
We have a function g(cc), where ¢ € .Z. By a similar analysis of the compressed function of ¢(cc),

we know that ¢ ¢ <7, and so we get g(cc) € &/ ++. Indeed, if ¢ € &7, then ¢; = co = c12 = 0. All
left hand sides of , @, @D and are 0, and this would imply that g € Z.

O

Lemma 4.14. If we have a rank 3 function f ¢ £, in #CSP5({f}), either we can pin to get a rank 2
function not in £, or we can realize a function in the sets o/ ++ or Ff“{(—i-—).

Proof. If f2 & of, we can realize f?4+, which is a function in &/++. Now we assume f? € /. If

any pinning of f always gives a function in %, we can apply Lemma and to get a rank 3

function not in ., such that all 7 bundles are (+), or all 7 bundles are opposite, or all 7 bundles are

non-empty consistent, or there are exactly 3 non-empty bundles and they are all non-empty consistent.
We consider the following cases.

1. All 7 bundles are (+).

Suppose the rank 3 function is ~(+). The matrix (a;;) in equations (3) and (4) is , with

HORROOR
HEOROHO
HEROROO

all b; = 0.
Let the compressed function of A be

Qf11teazateaws +2¢12%1T2+2¢13T1T3+2C23T2T3+4C123T1T2T3

We show that in this case we can pin x3 to get a rank 2 function not in .Z.

If we pin x3 = 0, the bundle z3 disappears, and the remaining six bundles are merged into three

bundles of type (++), and the new matrix (a;;) for the rank 2 function in equations and is
10

10

01|, with all six b; = 0. The new expression for the compressed function is q¢1#1c2e2t2c122122
11

11

If any of c1,co,c12 is odd, then some equation in @D or is violated, thus we get a rank 2
function not in Z.

Suppose ¢ = ¢o = ¢12 = 0. Now we pin x3 = 1, the bundle z3 disappears, and the remaining
six bundles are merged into three bundles of type (+—), and the new matrix (a;;) for the rank 2
function is the same as above, but the new vector b = (0,1,0,1,0,1)T. The new expression for the
compressed function is a(c1+2c18)z1+(ca+2e23)22+2(c1242e123)21122 - Now equation is violated, and
we get a rank 2 function not in .Z.

23

2. All 7 bundles are opposite.

Suppose the rank 3 function is h(+—). Let its compressed function be

afl®l +cowotc3x3+2¢1221T2+2¢13T1T3+2¢23T223+4C€123T1 2223 .

Similar to the proof above, if it is not the case that ¢y = co = ¢3 = ¢12 = ¢13 = co3 = 0, we can
pin to get a rank 2 function not in .. But if all these values are even, then because f ¢ .Z, by
equation (1)), we get c123 = 0. So we have a function h(+—) € F¥ (4+—).

3. All the bundles are consistent.

Suppose the rank 3 function is h(cc). A similar analysis about the compressed function gives
€1 =y =c3 =ci1o0 =c13 = co3 = 0 and c193 = 1. This tells us that the essential function A is not
in &, regardless of whether the essential arity is 3 or 7.

O

Lemma 4.15. Suppose f & . In #CSP5({f}), either we can get a function in </ ++, or we can
realize a function of rank at most 3 not in L.

Proof. If > & a7, we can realize f2++, which is a function in .&7++. Now assume f? € o/. Hence, f
has the form . Suppose f = supp(f) - oL @)+2Q@)+4H(@) If 4 coefficient of H is even, we remove the
corresponding monomial since a® = 1. According to Theorem we need to consider two cases.

The first case is that H is not homogeneous of degree 3. Let M be a monomial having the minimum
degree among all monomials in H of degree at least 4. Of course the degree of M is at least 4. We pin
the free variables of f which are outside of M to 0, and pin the variables in M to 1 except 4 of them, to
get a new function of rank 4. The new H polynomial has a unique monomial c¢js3421222324 of degree
4 where c1234 = 1. By Theorem it is still not in .. We denote this new function still by f.

From f we construct 3 functions of rank 3; if they are all in ., we will get a contradiction.

Consider f*4=Y. Substitute x4 = 0 into the compressed function of f, we find in the H polynomial
of f%4=0 the coefficient of xixox3 is c1o3. If f¥4=Y € &£, according to condition , this coefficient
has the same parity as the number of variables in the bundle x; + x5 + 23 in f*=C that are labeled
as (—), i.e., those variables that are equal to x1 + x2 + x3 + 1 on the support. These variables come
from the union of two sets of variables of f. We denote by v123 the number of variables in the bundle
x1 + x9 + x3 in f that are labeled as (—), i.e., those variables that are equal to x1 + x2 + 23 + 1 on the
support. Similarly denote v124 and vi234 the numbers of variables that are equal to 1 + 22+ x4+ 1 and
T1 4+ 22 + x3 + x4 + 1, respectively, in f on its support. We have cj93 = v123 + v1234.

If we similarly consider f*3=0 we get c194 = V124 + V1234.

The third rank 3 function we construct is f*3=%4. To do so, we connect one z3 variable and one
x4 variable by a (=4) function, and pin any variable labeled 23 4+ x4(4) to 0 and any variable labeled
x3 + x4(—) to 1. We get one extra condition that 3 = x4, which narrows the support. That is, we
get Xgs=z4 - f- The 15 bundles of f, namely zi,x2,...,21 + 22 + 3 + 24, turn into 7 bundles. The
new bundle 1 + x5 + x3 is the union of the original bundles x1 + x2 + x3 and x1 + z2 + 4. Hence,
if f73=74 ¢ &, its corresponding coefficient ¢}43 = vi23 + vi24, according to condition on fT3=r4,
Hence |93 = c123 + ¢124.

Substitute x3 = x4 into the compressed function of f. We get ¢jo3 = c123 + c124 + c1234. Thus we
reach a contradiction c934 = 0.

We conclude that at least one of the three rank 3 functions f*4=0, f*3=9 and f*3=%4 is not in .Z.

Now, we can assume that H is homogeneous of degree 3, and consider the second case that one of

the equations , @, , , @D, and does not hold. If one of the 6 equations , @, ,

24

@, and does not hold, then we can pin to get a function of rank at most 3 not in .Z. For
example, if equation does not hold for j < k, we can keep x; and z, and pin other free variables
to 0. Now, we can assume all the 6 equations , @, @, @, and hold, and equation
does not hold for j < k <1 <m.

Firstly, keep x;, zy,z; and z,, and pin other free variables to 0, to get a function h. The left hand
side of is the number of variables in all bundles in f with a name that contains x;, zy, 7, Ty, i.e., any
name that is of the form x; + x4+ 2; + 2, +any affine linear form of other z’s. This number is precisely
the number of variables in the bundle named x; +) +x; + 2, in h, i.e., the number of variables named
Tj+xp+x+ Ty, OF Tj+ 2+ + Ty, + 110 h. Because f fails , this number is odd, and so h still fails
equation (8). Consider h*»=0 and h*»=!. Because the H polynomial of f is homogeneous of degree
3, when we set x,,, = 0 or x,,, = 1, there are no new cubic terms formed, and thus the c;; coefficients
of h*m=0 and h*»=! are the same as the c;r coefficient of f. The x; + x, + 2; + 1 variables of hEm=0
come from the x; + x) + x; + 1 variables and the x; + x; + x; + x,,, + 1 variables of h. Meanwhile, the
xj + x4+ 27 + 1 variables of h*m=1 come from the Zj + xp + 27 + 1 variables and the x; +xp + x; + 2y,
variables of h. Hence, they have opposite parities, as their sum is odd. But they are respectively the
left hand sides of the equation (11) for h*=0 and h*m=1, whose right hand sides are the same cjkl- It
follows that one of the two rank 3 functions h*»=% and h*»=! must fail equation , and thus not in
Z. O

Putting Lemma [£.15] [4.14] [£.13] and [£.12] together, we get the following lemma.

Lemma 4.16. If we have a function f & £, then in #CSPS({f}), we can realize a function of the
form:

o o4+,
Flaf Ffsz FIQ{(_'__):

F3Qj(+_);

Ff%(—i-—).

4.7 Putting Things Together

Lemma 4.17. For any j,k € {1,3,7}, there is some s € {1,3,7}, such that we can realize in the setting
#CSPS(F7 (+=), F(+-)), a function in the set FX(++).

Proof. Let Min = min{j, k} and Max = max{j, k}.

If Min = Max, we overlay two functions from F{(+—) and F(+—) by bundles, and connect the
variable labeled (—) in each bundle of one function to the variable labeled (—) in the corresponding
bundle of the other function, to get a function in F*(++).

If Min = 1, say Min = j. Then for each bundle of a function in F(+—), we merge a Ff{(—i-—)
function with it by connecting the corresponding variables labeled (—), to get a function in F*(+4). If
Min = k just switch j and k.

The remaining case is Min = 3 and Max = 7. Suppose we have g € Fy’ (+—),h € F¥(+-).

We take one copy of h(zy, zo, x3, T3 4+ x3, T1 + T3, 1 + T2, 21 + &2 + x3)(+—), and three copies of g:
g(ui,ug, ur +u2)(+—), g(vi, v2, v1 +v2)(+—), §(wr, w2, w1 +wz)(+—) to construct a function realizing a
function f in (21, u1, 2, v1, T3, W1, T2+ T3, U2, T1 + T3, V2, T1 + T2, W2, T1+ T2+ 23, w1 +ws). (See Figure
for an illustration.). We merge the u; bundle of one copy of g with the x; bundle of h, by equating the
variables labeled u;(—) and d z1(—). That is, set u; + 1 = x1 + 1. Similarly, we merge the bundles us
with zo + x3, merge v; with a9, merge vy with x; + x3, merge w; with x3 and merge we with x; + xs.

25

These 5 merging operations are accomplished by similarly connecting 5 pairs of variables labeled (—)
as illustrated in Figure After these mergings, the remaining four bundles xy + xo + x3, w1 + uo,
v + v2, w1 + we are already merged into one bundle of type (+ + + + — — ——) automatically, which
can become (++) by 3 collations. Including these 3 collations there are a total of 9 pair of equating
variables all labeled (—) except the pair u; + u2(+) and vy + va(+). The 3 collations are algebraically
r1t+xo+ax3+1=ur+us+1, uy+uo = vy +v2, v1+v2+1=w;+ws+1, and we leave x1 +x2 + x3 and
w1 + wo in this bundle. The equations from these 3 collations are algebraic consequences of the previous
6 merging operations. To summarize the above description, the 18 variables among 32 variables of the
4 functions are matched by 9 edges in this gadget, we list them by the following equations.

ur+1 = x1+1
u+1 = x9+x3+1
v+l = z9+41
v+1 = z14+ax3+1
wi+1 = x3+1
wa+1 = x14+20+41
ur+us+1 = 21 +ax2+z3+1

Uyt uz = v+ U

(v1+v2+1 = w+wr+1

Removing algebraic redundancy, this system of equations is equivalent to

u = I
Uy = T+ I3
V1T = T2
vy = x1+ 23
wy = I3

L w2 = T+ 22

with consequences uq + ug = v1 + v9 = w1 + wo = x1 + T9 + T3.

The external variables of this gadget has 7 bundles x1, x2, x3, 1+ X2, 1 + 23, T2+ 3 and x1+z2+x3
and are all of the type (4+4). It is not hard to verify that, the above system of linear equations are all
the new introduced linear constraints on the 14 external variables, besides the natural linear constraints
of the support of h already shown by the names of variables. So f has 7 bundles, such that it has
the form f(z1,x2,x3,z0 + 3,1 + @3, %1 + T2, 21 + 22 + x3)(++). Denote the input variables of f
by X. We calculate f on a general input X(++) on the support. Every such assignment has a
unique extension to the 9 internal edges so that the 4 functions give no zero values. We get f (X) =
h(X)§(z1, 20 + 23, 21 + 2 + 23)§(22, T1 + T3, 21 + T2 + 23)J (23, 1 + T2, 11 + T2 + 23). Let h = MP7q,
where ¢ € F¥, since h € F&(4—) by assumption. We have h(X) = ME7(X) - q(X), where we view M,
as a generalized binary equality function (which modifies each external variable). Now, we see that f
is a product of MZ" with 4 functions in </: ¢, §, § and §. The product of 4 functions in & is in 7.
Hence, f € F& and f € F&(++).

Suppose we have g € F§(+—),h € F#(+—). The construction of the gadget f and the analysis of
the support of f are the same. In the last step, we calculate f . Let § = M®3p, where p € F;f{, since
g € F§'(4+—) by assumption. Then we have

fx) =

>

(X)g(z1, 22 + 23,21 + T2 + T3)§(T2, T1 + X3, T1 + T2 + 3)§(T3, X1 + T2, T1 + T2 + T3)
(X)p(z1, 22 + 3, 21 + 22 + 23)p(22, X1 + X3, 1 + T2 + x3)p(23, 1 + 22, 21 + T2 + T3)
MET(X) My (1 + x9 + x3) My (21 + 29 + 3).

=

26

The second equality holds, because from each § we get a p and a M®? applied to the 3 variables. The
modifier factor M§7(X) is obtained by collecting one factor M, on each of the inputs x1,x9, x3, 21 +
T9,T1 + T3, To + T3, T1 + T2 + x3, and there are still two extra factors of M, on x1 + x2 + x3.

Because M2(= M,» = M;) isin «/, h and p both belong to &7, and f € F%, we have f € F&(++). O

Lemma 4.18. For any j, k € {1,3,7}, there is some s € {1,3,7}, such that we can realize in the setting
#CSP%(I@‘Z{(Jr), FX(+)), a function in the set F&(++).

Proof. The proof is similar to the proof of Lemma The only difference is a slight modification in
the gadget construction when Min = 3 and Max = 7. Now each bundle of the constituent functions
from F f{ (+) and F¥(+) has a single variable labeled (+). When we merge two bundles, we connect
these two variables by a copy of (=4). After the six connection steps have been made, the x1 + x3 + =3
bundle includes uj + ug, v + vo and w; + ws, and has type (++++). We turn it to (++) type using
collation. O

Lemma 4.19. For any j € {1,3,7}, we can realize a function in the set F{*(++), from either
#CSPS(Ff (+-), F{) or #CSPS(Ff(+-), Ff').

Proof. Using (=4) we change F7*(+—) to Fj*(+ + +—). For each bundle, we can apply a function in
F{ to one variable labeled (4) and one variable labeled (—) to get a function in F#*(++). We can also
apply a function in F{* to one variable labeled (+) and one variable labeled (—) in each bundle to get
a F*(++) function. Note that in the latter case, the pair of variables labeled (+) and (—) in a single
bundle will always take opposite values on the support and therefore the aggregate modifcation by F}*
is a constant factor, thus it does not change the membership of its essential function in F;".]

Lemma 4.20. For any set of constraint functions F, let F(++) = {f(++) | f € F}. Then
#CSP(F) <r #CSPo(F(++4)) < #CSPS(.F (++)).

Proof. In an instance of #CSP(.%) if we replace each edge by two parallel edges, and replace each
occurrence of any f € F by f(++) € F(++), we get an instance in #CSPo(.Z (++)), and they have
the same value. O

Proof of #P-hardness part of Theorem [{.1]:

Wehave # € P, ¥ € o, F € &% and F € . By Lemma 4.8 we can realize a function p++
in the setting #CSPS(.#), such that p ¢ &2. Now the idea is to obtain a function from .7+, then we
can apply Lemma This will allow us to apply Theorem to prove #P-hardness.

Lemmata [4.10] [4.11] and [4.16] tell us respectively what we can get from % ¢ &, % ¢ &/ and
F ¢ &. 1If one of the lemmas brings us as one of the direct outcomes a function f++ in o/ ++,
together with p++, we have #CSP({p, f}) <t #CSP§(#) by Lemma Then by Theorem [2.1], we
have proved that #CSP§(.%) is #P-hard.

So we may assume the direct outcomes of the three lemmas contain no function in &/ ++. We
analyze the possible combinations of outcomes, and still construct a function in &4+ to finish the
proof.

If the outcomes contain no functions belonging to some F&(+—) (s € {1,3,7}), then by the outcomes
of Lemma, and Lemma, for the cases of reducing &/ and 7% respectively, there must be both
a function in F2(+) (k € {1,3,7}) and a function in Fj‘«—l—) (€ {1,3,7}). By Lemma we can

27

realize some function in F&(++) (s € {1,3,7}). But any function from F&(++) (s € {1,3,7}) is from
o/ ++, and so #CSP§(F) is #P-hard.

Now suppose the outcomes of Lemma and Lemma contain a function in F*(+—) (j €
{1,3,7}). By Lemma either we have a function in F (+—) (k € {1,3,7}), or we have a function
in F{7, or we have a function in F{. In the first case, by Lemma we realize some function in
F&(++) (s € {1,3,7}). In the second and third cases, by Lemma we can also realize some
function in F*(++) (s € {1,3,7}). As noted above, any function in F*(++) is from «/++. Therefore
#CSPS(.#) is #P-hard. This copletes the proof of Theorem O

5 Complexity dichotomy theorem of Holant®

We use a 2 x 4 matrix to denote a function of arity 3, with rows indexed by z; = 0,1 and columns

000 fOOl fOlO fOll

We say a function is a generalized EQUALITY if its support is a pair of antipodal points {x,X}. A
binary function is a generalized DISEQUALITY if it has support {01, 10}, i.e., f = (0, a,b,0) with ab # 0.

Lemma 5.1. Let f € F be a generalized EQUALITY of arity 3. Then Holant®(.%) is #P-hard unless
F A, F A or F C . In all three exceptional cases, the problem is in P (and belongs to the
tractable families for #CSP$).

Proof. Let supp(f) be {(a1,a2,a3),(1—aj,1—az,1—as)}. If they are 000 and 111, then f is a symmetric
function [a, 0,0, b], with ab # 0. Otherwise, there are both 0 and 1 among (a1, as,as). By renaming
variables, without loss of generality, we assume that they are 001 and 110. By connecting 21 and x4
with a self loop, we get a unary function [a, b] with ab # 0. By connecting this unary function to z; of
f, we get a generalized DISEQUALITY function (0, ¢, d,0), with c¢d # 0. By connecting this generalized
DISEQUALITY to x3 of f, we obtain a symmetric generalized EQUALITY. After a scaling, in both cases,
we may assume to have [1,0,0,b].

Taking a self loop on [1,0,0,b] we get [1,b]. Connecting one [1,b] back to [1,0,0,b], we get [1,0,b%].
Connection one [1,0,b%] back to [1,0,0,b], we get [1,0,0,3]. Then we have

Holant([1,], [1,0,%],[1,0,0,6°] | .# U{[1,0,1]}) <t Holant’(.%).

After a holographic reduction by T' = ((1) 2), the left hand side becomes {(=1), (=2), (=3)} and the

right hand side becomes T.% U {[1,0,b%]}. By the dichotomy theorem for #CSP with each variable
appearing at most three times [I1], we know that the problem is #P-hard unless T.% U {[1,0,b*]} C &
or T.Z U {[1,0,b*]} C &/. A diagonal holographic reduction keeps the class & invariant, so T.% U
{1,0,*]} C 2 iff F C P, as [1,0,b%] € L. If TF U{[1,0,b*]} C o/, we have b*> € {£1,+i}. If
b = £1, the holographic transformation 7" also keeps the class .7 invariant, and so T.% U {[1,0, %]} C
o iff F C . If b> = =i, the holographic transformation is the a transformation (followed by a
transformation that keeps < invariant), and so T.% U {[1,0,b?]} C & iff # C /. This completes the
proof. O

In the above proof, once we have a symmetric generalized EQUALITY [1,0,0,b], we no longer need
the two unary pinning functions Ay and A;. We will use this fact later.

Lemma 5.2. Suppose .Z contains a generalized EQUALITY f of arity 4, then Holant®(.#) =1CSP2(.%).

28

Proof. Let supp(f) be {(a1,as,as,a4),(1 —ai,1 —ag,1 —as,1 —aq)}. By renaming variables, we only
need to consider three possibilities for (aj,as,as,aqs) : 0000,0001 or 0011. For 0000, the function is
already symmetric [a, 0, 0,0, b], with ab # 0. For 0001, by connecting =1 and x2 with a self loop, we get
a generalized DISEQUALITY function. By connecting this generalized DISEQUALITY to x4 of f, we get a
symmetric function of the form [a, 0,0, 0,b] (ab # 0). For 0011, we take two copies of f and connect their
variables x3 and x4 respectively. From this, we also get a symmetric function of the form [a, 0,0, 0, b]
(ab # 0). So, after a scaling, in all cases we may assume to have [1,0,0,0,b] (b # 0). By a self loop we
get [1,0,b]. Using k& — 1 copies of [1,0,b] to connect back to [1,0,0,0,b] we get [1,0,0,0,0*]. If b is a
root of unity, we can directly realize [1,0,0,0, 1]; otherwise, we can interpolate [1,0,0,0,1]. From that
we can get all EQUALITIES of even arity. This completes the proof. O

Lemma 5.3. Let f € F be a non-decomposable function of arity 3 satisfying the parity condition,

. a 0 0 b 0 a b O ol o -
namely it has the form (0 e d O> or <c 0 0 d). Then Holant®(.#) is #P-hard unless

Holant*(.%) is tractable or #CSP§(.F) is tractable. In both exceptional cases, the problem Holant®(.%)
s in P.

Proof. Because any pair of antipodal points in {0,1}3 has opposite parity, if there are at most two
nonzeros among a, b, ¢, d, they would belong to a same subcube {0,1}2, thus f would be decomposable.
Since f is non-decomposable, at least three of a,b,c,d are non-zero. By the parity condition, some
subcube {0,1}? has exactly two nonzero values, Without loss of generality suppose it is the subcube
x3 = € (where € € {0,1}). If the two nonzero values have indices 01le and 10¢, then we have a generalized
DISEQUALITY by pinning x3 = €. If the two nonzero values have indices 00e and 11¢, then either 0l€
or 10¢ have nonzero values. Then pinning x2 = 1 or x; = 1 respectively produces a generalized

DiseQuALIiTY. Use the DISEQUALITY to flip bits, we can change f to the form (g 2 2 8) with

bed # 0. Using the triangle gadget, we can get three symmetric functions:
[a® 4+ b2,0, bed 4 acd, 0], [a® 4 2,0, bed + abd, 0], [a® + d2, 0, bed + abe, 0].

Note that by labeling in three different and cyclically symmetric ways in the triangle gadget we get
these three functions (on the Boolean domain, a cyclically symmetric ternary function is symmetric).
If at least one of the three values bed + acd, bed + abd, bed + abe is nonzero we get a symmetric function
of the form [z,0, 1,0], for some z € C. Otherwise, we have b = ¢ = d = —a, in which case the original
function f is already in this form [z, 0, 1,0] after a nonzero scaling.

By dichotomy theorem for symmetric Holant® [6], we know that Holant®([z, 0, 1, 0]) is #P-hard unless
z* = 1. Now we assume that z* = 1. After pinning we get the binary [z, 0, 1]. Connection three copies

we get [23,0,1]. Let T = <\{§ ﬁ), we have [23,0,1]T%% = [1,0,1], and [2,0,1,0] = T%3[1,0,0, 1] up
to a nonzero factor 2y/z. So, we have the following reduction
Holant({[1,0,0,1],[z7' + 1,27 = 1,27 + 1]} U T~ L)
=7 Holant([1,0,1] | {[1,0,0,1],[z7" + 1,27 = 1,27 4+ 1]} uT~L%)
([°
c

=1 Holant([2",0, 1]|{[#,0,1,0],[1,0,1]} U.%)
<t Holant®(.%).

Having the arity 3 EQUALITY (=3) = [1,0,0, 1] in a Holant problem allows us to get EQUALITY of all
arities, and thus we can apply the #CSP dichotomy on T71.Z U {[z7! + 1,271 — 1,271 + 1]}.

29

1 1
e Case z =1. Then T = (), an orthogonal matrix (up to a scalar 1/4/2) that belongs to the

1 -1
stabilizer group of «7. If T71.% C o/, then # C &/. If T C &, then .F C TP, a tractable
family for Holant*. For all other .%, it is #P-hard.

e Case z=—1. Then T = (i _Zl) =1 (1 _11) ((1) (1)> is essentially the Z transformation. Note

that ((1) é) belongs to the stabilizer groups of both &/ and Z. If T™'.% C &7, then ¥ C Zo/ =

/. Hence #CSP() is tractable, in particular, #CSP§(%) is tractable. If T~1.% C &2, then
F C 7P, a tractable family for Holant*. In all other cases, it is #P-hard.

C C

O{ fl) for some odd c. In this case, [z71 + 1,271 1,27t +1] ¢ 2,

so the only possible tractable case is T~1.% C 7. Then it is easy to see that .# C &/®, a tractable
family for #CSP$. In all other cases, it is #P-hard.

e Case z = +4. Then T = (

This completes the proof. O

In the above three lemmas, we stated and proved them for general complex valued functions. In the
following lemmas, functions are real valued, which is important for our interpolation to succeed. We
first define the following notion of non-interpolatable.

Definition 5.1. Let ab # 0 be two real numbers. A binary function is called non-interpolatable if it is
f the f a b a b
of the form { _, = Jor{, _ .

Non-interpolatable 2 x 2 matrices are just nonzero multiples of orthogonal matrices with nonzero
entries.

b
d
degenerate). Unless it is non-interpolatable, we have Holant®(.#) =rHolant*(.#).

Lemma 5.4. Let ((Z > € F be a real valued binary function with ab # 0 and ad # bc (non-

Proof. By a Lemma 5.3 of [9], we can use a non-degenerate symmetric real valued binary function
<z ‘Z) and two unary [0,1],[1,0] to interpolate all unary functions unless y = 0 or z + z = 0 (the
conditions guarantee that the two eigenvalues have different nonzero norm, and [0, 1], [1, 0] are not two

: : . b .
eigenvectors). From the binary function (CCL d)’ we can get two non-degenerate symmetric real valued

a’?+b% ac+bd a’>+c ab+cd
ac + bd 62+d2) and <ab+cd b2 + d?
unless ac + bd = 0 and ab + c¢d = 0. Since ab # 0, this implies that ¢ = b,d = —a or ¢ = —=b,d = a,
which are non-interpolatable. O

binary functions (> . Since a? + b + 2 + d? # 0, we are done

Lemma 5.5. Let f € .F be a real valued function of arity 3 such that each of six pinnings f*=0, fri=1
(1 < i < 3) produces a non-interpolatable binary function. Then Holant®(.#) is #P-hard unless .7 is a
tractable family for Holant™ or #CSP (the latter condition certainly implies tractablility for #CSPS).

Proof. By definition, all four values of a non-interpolatable function are nonzero. Thinking in terms
of the six faces of the cube {0,1}3, the three function values f(100), f(010), f(001) are either equal or
negative of each other. If they are all equal, then the function is symmetric having the form [a, b, —a, —b]

30

with ab # 0, and we can get the unary function [a, b] by pinning. If they are not all equal, then without
loss of generality we can assume that —f(100) = f(010) = f(001) and the function has the form

—b a a b
x1 of the function f, we get the DISEQUALITY function: (0,a? + b2,a® + b%,0) a nonzero multiple of

(0,1,1,0) since ab # 0 and a,b € R. Connecting the DISEQUALITY function back to x; of the function

. —b a a b
f, we get the function (a b b —a

we can also get the unary [—b, a].
Connecting one unary [a, b] back to [a, b, —a, —b], or [—b, a] back to [—b, a, b, —a], we get the function

1 > , we have

[a,b, —a, —b] = Z%3]c,0,0,d] for some nonzero c,d € C, and [1,0,—1]Z%% = 2[1,0,1]. So we have the
following reduction:

b b —
(@ a>. By pinning, we can get the unary function [b,a]. Connecting this unary back to
>. This is a symmetric function [—b, a, b, —a] with ab # 0, and

1
[1,0,—1], again because a, b are nonzero real numbers we have a? 4 b? # 0. Let Z = (z

Holant(Z 1% U {[c,0,0,d], Z7 Ao, Z7 A1 })
=1 Holant([1,0,1] | Z72# U {[¢,0,0,d], Z" Ao, Z7 A1 })
=7 Holant([l 0,1](z7H®? | F U {Z%%[c,0,0,d], Mg, A1 })
=71 Holant([1,0,—-1] | # U{[a,b, —a, —b], Ao, A1})

<7t Holant®(%)

The reduction for [—b,a,b, —a] is the same. By Lemma we know that Holant(.%#) is #P-hard,
unless # C o, # C d% or H# C P, where # = ZLF U{[c,0,0,d],Z Ao, Z ' A1}. Notice
that Z7 1Ay = %G _ZZ> <(1)> = %G), and the unary function [1,1] ¢ &/*. We conclude that
Holant(.%) is #P-hard, unless 5 C o or # C £. Since Z is in the Stablizer group of </, we have
Zof = of , and so the first condition translates to .# C &7, which is a tractable condition for #CSP(.%).
The second condition translates to % C Z42. This implies that % is &-transformable, namely in
Holant(=2| .#) =1 Holant((=2)Z%? | Z71.%), both (=2)Z%? = (#3) € & and Z~1.% C . This is one
of the tractable families for Holant* problems in Theorem O

Lemma 5.6. Let [€ F be a non-decomposable real valued function of arity 3 with the form

a 0 0 c 0 a c O , ol om o
(b 00 d "\o b 4 0> with ab # 0. Then Holant®(.%) is #P-hard unless .F is a tractable
family for Holant* or #CSPS.
Proof. By being non-decomposable, ¢ and d cannot be both 0. For the form 8 Z cCZ 8 , we can get

a generalized DISEQUALITY by pinning and then use this generalized DISEQUALITY to change f to the

form <Z 8 8 2) So, we only need to deal with this case.

2
We can get the unary function [a,b] by pinning. Connecting [a,b] to zo of f we get (Zb 22),
a® ab

bc bd
the binary function is non-interpolatable. If so, we know that cd # 0. Similar, we can realized unary
ac cd
be d?

which also gives us () by switching the two variables. Applying Lemma we are done unless

function [c, d] by pinning. Connection [c, d] to x5 of f we get <) We are done unless this binary

function is non-interpolatable.

31

Now, we assume that both binary functions are non-interpolatable. From the first one, we get
a®? = +bd and ab = Fbe. If a> = —bd and ab = bc, then a = c. By being real, ac = a® > 0, so from the

second one, ac = d? and bc = —cd. So a = +d and b = —d. This gives us the function <1 8 8 _11>

or <_11 8 8 1) after scaling. If a®> = bd and ab = —bc, then a = —c. By being real, ac = —a? < 0,
so from the second one, ac = —d? and bc = cd. So a = +d and b = d. This gives us the function

10 0 -1 1 00 -1 . .
<1 00 1) or <_1 0 0 _1> after scaling. If we concentrate on the 2 x 2 nonzero submatrix,

1 1 1
the four matrices are obtained from (1 B 1> by pre- or post- multiplying by the orthogonal <O _01>,

and thus all are orthogonal up to a scalar 1//2. Therefore, by computing MTM for the 4 x 2 matrix M,
we get the signature of the EQUALITY function of arity 4, up to a scalar 2. This is realized by connecting
the x1 variable of two copies of the function with matrix M. So we are done by Lemma [5.2 O

Lemma 5.7. Let f € . be a non-decomposable function of arity 3. Suppose all siz binary functions
=9 and f*=1 (1 < i < 3) are either non-interpolatable or degenerate, and furthermore both types
occur. Then Holant®(.%) is #P-hard unless either Holant*(.#) or CSP§(.%) is tractable in polynomial
time.

Proof. Recall that the signature matrix of a non-interpolatable binary function is a nonzero multiple
of an orthogonal matrix with 4 nonzero entries. Suppose f*=¢ is non-interpolatable (¢ = 0,1). On any
face z; = 0,1 for j # i there are at least two nonzero entries from f*=¢, and hence if f%=% or %=1 has
a zero entry it must be degenerate and have two zero entries. Then f*=!7¢ must be identically zero,

a contradiction to f being non-decomposable. Hence f has no zero entries among all eight values. So
a b Xa Xb

4b Fa oz y> where X\ # 0 , up to some bit
flips. Since A is a real matrix of rank 2, the real symmetric matrix AAT has rank 2 and positive trace.
If (a,b, Aa, \b) is not orthogonal to (b, Fa,x,y), which is equivalent to A(a,b) is not orthogonal to
(z,y), then AAT has nonzero off diagonal, and we can interpolate all unary functions using AAT and a
unary [1,0]. So we may assume A(a,b) is orthogonal to (z,y). Since A # 0, we have (a, b) is orthogonal

a b Ada Xb . .
to (z,y). Thus f has the form A = <0b —ca b Ma), (o0 = +1). Clearly p # o), since f is

we can assume that the function is of the form A = <

non-decomposable.
By pinning we can get (a)\a> and < b Ab > By assumption both are either non-
ob ub)’ —oca —pa
interpolatable or degenerate. By p # o), both are non-degenerate. So both are non-interpolatable.
Hence the columns are orthogonal,

Xa?4+opb> =0 and Ab? +opa® =0. (18)

Now we consider the gadget with signature

a ob
b —oa a b Ada b
TpA —
AA= Aa pb (o’b —oa b —,ua) ’
Ab —pa
2 32 _
We can pin to get its first two rows (a ;)l—b o2 3_ R (- (()I,u)ab (A gu)ab)' Here we used |D

32

Note that (A — op)ab # 0. Hence this ternary function is non-decomposable. By Lemma we are
done.
O

Now we are ready to prove the reduction from Holant® problems to Holant* or #CSP5.

Theorem 5.1. Let % be a set of real valued functions. Then Holant®(.F) is #P-hard unless .F is a
tractable family for Holant* or #CSPS, for both we have explicit dichotomy theorems.

Proof. By Lemma [2.1] we can assume that functions in .# are non-decomposable. If every function in
Z has arity at most two, then Holant(.%) is tractable. Now we assume that .# contains a function f
of arity at least 3. Since f is non-decomposable, there are at least two nonzero function values. Let

Dy = mln{d(x,y) | T 7& yvf(x) 7& O?f(y) 7& O}a

the minimum Hamming distance between two inputs with nonzero values.

e If Dy > 3 and Dy is odd, we can get a generalized EQUALITY of arity 3 by pinning and then by
self loops, and so we are done by Lemma, [5.1

e If Dy > 4 and Dy is even, we can get a generalized EQUALITY of arity 4, and so we are done by
Lemma [5.2]

o If Dy = 2, without loss of generality, we can pin z3z4---z, such that the remaining binary

3 2) or <2 8), where ab # 0. If it is the second form, it is a

generalized DISEQUALITY and can be used to flip the input. So we can assume g(z1,x2) has the
first form. If for all other values of x3x4 - - - x,, the remaining binary function is a scaling of the
above one, then the function f is decomposable, a contradiction. Let A be the set of bit patterns
for x3xy - - - x5, for which the remaining binary function is a nonzero scaling of the above function,
and let B be the set of bit patterns for which the remaining binary function is not a scaling of the
above function. By definition of this binary function, A # (). By being non-decomposable, B # ().
Clearly AN B = ().

Let

function g(z1,x2) is of the form (

Dy = min{d(x,y) |z € A,y € B},
be the minimum Hamming distance between the two sets.
1. If D; =1, by pinning we get a non-decomposable ternary function and it satisfies the parity

condition. This is clear by looking at the cube {0,1}3, using the fact that Dy = 2, ab # 0
and the definition of B. So we are done by Lemma [5.3]

2. If Dy = 2, without loss of generality we may assume a pinning bit pattern for zs...x,
such that further pinning x3z4 = bsby gives us the function g(x1,x2), and further pinning
x3x4 = bgby gives us another binary function which is not a scaling of g. Because Dy = 2, the
binary function obtained by further pinning xsxs = bsbs or x3x4 = b3bs must be identially

0. It follows that we have a function of arity 4 after pinning, of the form

33

a 0 0 Db
0 00O . . e .
000 0 where the row index of x3z4 is up to a bit flip, with ¢ and d not both 0. It
0 ¢c d O
is easy to verify that this function is non-decomposable by ab # 0 and the definition of B.

a 0 0 b

For the latter case , We can pin x1 or xs to get a generalized EQUALITY of

0 00

0 0 0O
0 ¢c d O

arity 3 since at least one of ¢ and d is nonzero. Then we are done by Lemma [5.1} For the

former case, by definition of B, det (Ccl Z) # 0. We take two copies of the function and

connect the respective x3 and x4 together. This produces a symmetry function of the form
, with z, z > 0. We can use it to realize or interpolate an EQUALITY of arity

4. So we are done by Lemma

3. If D1 > 3, we can get a generalized EQUALITY of arity at least 3, and we are done by Lemma
6. or Lemma

o If Dy = 1, without loss of generality, we can assume that there is a pinning for zoxszy - - - x,, such
that the remaining unary function is [a,b] with ab # 0. If for all other values of zoxszy- - Xy,
the remaining unary function is a scaling of the above one, then the function f is decomposable,
a contradiction. Let A be the set of bit patterns for xox3xy - - - 2, for which the remaining unary
function is a nonzero scaling of [a, b], and B be the set of patterns for which the remaining unary
function is not a scaling of [a,b]. By the above argument, both sets A and B are non-empty.

Let D5 be the minimum Hamming distance between the two sets A and B. Again,

1. If Dy > 3, we can get a generalized EQUALITY of arity at least 3, and we are done by
Lemma [5.1] or Lemma

2. If Dy = 2, we have a non-decomposable ternary function taking the form in Lemma 5.6 and
we are done by that lemma.

3. If Dy = 1, without loss of generality, we can assume that there is a pinning for x3x4 - - - x,, such

that the remaining binary function is of form where ab # 0 and ad # bc. We are done

b
d
by Lemma [5.4] unless it is non-interpolatable. Now we assume that it is non-interpolatable.
In particular, abed # 0. If for all other values of z3zy4 - - - ,,, the remaining binary function is
a scaling of the above one, then the function f is decomposable, a contradiction. Let A be
the set of bit patterns for xsxy4 - - -z, for which the remaining binary function is a nonzero
scaling of the above function, and B be the set of bit patterns for which the remaining binary
function is not a scaling of the above function. By the above argument, both sets A and B
are non-empty.

Let D3 be the minimum Hamming distance between the two sets A and B. Again,

Case D3 > 3: We can get a generalized EQUALITY of arity at least 3, and we are done by
Lemma [5.1] or Lemma [5.2

Case D3 = 2: We have a function with arity 4: for x3 = ag,r4 = a4, we have a non-
interpolatable binary function; for x3 = 1 — a3, x4 = 1 — a4, we have a binary function

34

which is not a scaling of the above one; for the other two values of x3, x4, the function is
entirely zero. Up to a flip on the row index bits x5 and x4, we have the function of arity

a b c d
0 0 0 O Ll s e s .
4 of the form 00 0 ol where abed # 0, and (o', b, ¢, d') is linearly independent

a v Jd d
of (a,b,c,d). If d'/a # V' /b, or /e # d'/d, or a'/a # /e, then we have at least
one pinning of x1 or zo such that the resulting ternary function is non-decomposable.
By linear independence, one of these must hold, and the resulting ternary function is
non-decomposable. That function is of a form of Lemma [5.6| and we are done by that
lemma.

Case D3 = 1: We get a non-decomposable ternary function. We know that at least one of

the six faces <CCL > is non-interpolatable. This implies that the four adjacent faces have

d
at least two nonzero entries (from {a,b,c,d}) that are of Hamming distance 1. If any
one of these 4 faces is non-degenerate and not non-interpolatable, then we are done by

by . .
q) B non-degenerate and not non-interpolatable,
we are also done by Lemma [5.4] unless it has no two adjacent nonzero entries. But if so,
being non-degenerate, it must have exactly two nonzeros at bit positions of same parity,

and two other zero entries at bit positions of the oppostite parity. Then in particular

Lemma If the opposite face of <i

any of the four adjacent faces of has exactly one 0 entry and thus both non-

b
d
degenerate and not non-interpolatable. Thus we conclude that if any one of six faces
is non-degenerate and not non-interpolatable, then we are done by Lemma Now,
suppose each of its six faces is either degenerate or non-interpolatable. We already know
that at least one of them is non-interpolatable. If all of them are non-interpolatable, we

are done by Lemma Otherwise, we are done by Lemma

This completes the proof of Theorem O

Acknowledgments

We sincerely thank Zhiguo Fu for his very insightful comments, in particular his gave the key insight to
a simplified proof of Lemma

References

[1] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. Journal of the
ACM, 60(5):34, 2013.

[2] Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19
- 22, 2012, pages 909-920, 2012.

[3] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negatively weighted #CSP: an effective complexity
dichotomy. In Proceedings of the 2011 IEEE 26th Annual Conference on Computational Complexity,
CCC 11, pages 45-54, Washington, DC, USA, 2011. IEEE Computer Society.

35

[4]

[5]

Jin-Yi Cai and Zhiguo Fu. Holographic algorithm with matchgates is universal for planar #CSP
over Boolean domain. CoRR, abs/1603.07046, 2016.

Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the capture of
vanishing signatures. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, pages 635-644, New York, NY, USA, 2013. ACM.

Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: dichotomy for
Holant® problems. Algorithmica, 64(3):511-533, 2012.

Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic algorithms by Fibonacci gates and holographic
reductions for hardness. In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 644-653, 2008.

Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting CSP. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 715-724, 2009.

Jin-yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of holant problems. SIAM J.
Comput., 40(4):1101-1132, 2011.

Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant* problems of Boolean domain. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011, pages 1714-1728, 2011.

Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted boolean #CSP. J.
Comput. Syst. Sci., 80(1):217-236, 2014.

Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting problems.
Inf. Comput., 125(1):1-12, 1996.

Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted Boolean
#CSP. SIAM J. Comput., 38(5):1970-1986, 2009.

Martin E. Dyer and David Richerby. On the complexity of #CSP. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pages 725-734, 2010.

Martin E. Dyer and David Richerby. The #CSP dichotomy is decidable. In 28th International
Symposium on Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011,
Dortmund, Germany, pages 261-272. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

M. Freedman, L. Lovasz, and A. Schrijver. Reflection positivity, rank connectivity, and
homomorphism of graphs. J. AMS, 20:37-51, 2007.

Heng Guo, Pinyan Lu, and Leslie G. Valiant. The complexity of symmetric Boolean parity Holant
problems. SIAM J. Comput., 42(1):324-356, 2013.

Sangxia Huang and Pinyan Lu. A dichotomy for real weighted Holant problems. Computational
Complezity, 25(1):255-304, 2016.

Leslie G. Valiant. Accidental algorthims. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings,
pages 509-517, 2006.

36

[20] Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565-1594, 2008.

37

	1 Introduction
	1.1 Our Results
	1.2 Techniques by Examples

	2 Preliminaries
	3 Local Affine Functions
	3.1 Algorithm
	3.2 Characterization

	4 Complexity dichotomy theorem of #CSP2c
	4.1 Notations
	4.2 Regularization Lemmas
	4.3 P
	4.4 A
	4.5 A
	4.6 L
	4.7 Putting Things Together

	5 Complexity dichotomy theorem of Holantc

