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Abstract
Budget feasible mechanisms, recently initiated by Singer
(FOCS 2010), extend algorithmic mechanism design prob-
lems to a realistic setting with a budget constraint. We
consider the problem of designing truthful budget feasible
mechanisms for monotone submodular functions: We give a
randomized mechanism with an approximation ratio of 7.91
(improving on the previous best-known result 233.83), and
a deterministic mechanism with an approximation ratio of
8.34. We also study the knapsack problem, which is a special
submodular function, give a 2 +

√
2 approximation deter-

ministic mechanism (improving on the previous best-known
result 5), and a 3 approximation randomized mechanism.
We provide similar results for an extended knapsack prob-
lem with heterogeneous items, where items are divided into
groups and one can pick at most one item from each group.

Finally we show a lower bound of 1 +
√

2 for the

approximation ratio of deterministic mechanisms and 2 for

randomized mechanisms for knapsack, as well as the general

monotone submodular functions. Our lower bounds are

unconditional, and do not rely on any computational or

complexity assumptions.

1 Introduction

It is well-known that a mechanism may have to pay
a large amount to enforce incentive compatibility (i.e.,
truthfulness). For example, the seminal VCG mecha-
nism may have unbounded payment (compared to the
shortest path) in path auctions [1]. The negative ef-
fect of truthfulness on payments leads to a broad study
of frugal mechanism design, i.e., how should one min-
imize his payment to get a desired output with incen-
tive agents? While a class of results have been estab-
lished [1, 23, 10, 11, 4], in practice, one cannot expect
a negative overhead for a few perspectives, e.g., budget
or resource limit.

Recently, Singer [21] considered mechanism design
problems from a reverse angle and initiated a study on
truthful mechanism design with a sharp budget con-
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straint: The total payment of a mechanism is upper
bounded by a given value B. Formally, in a marketplace
each agent/item has a privately known incurred cost ci.
For any given subset S of agents, there is a publicly
known valuation v(S), meaning the social welfare de-
rived from S. A mechanism selects a subset S of agents
and decides a payment pi to each i ∈ S. Agents bid
strategically on their costs and would like to maximize
their utility pi − ci. The objective is to design truthful
budget feasible mechanisms with outputs approximately
close to a socially optimal solution. In other words, it
studies the “price of being truthful” in a budget con-
straint framework1.

Although budget is a realistic condition that ap-
pears almost everywhere in daily life, it has not re-
ceived much attention until very recently [7, 2, 3, 21]. In
the framework of worst case analysis, most results are
negative [7]. The introduction of budget adds another
dimension to mechanism design; it further limits the
searching space, especially given the (already) strong
restriction of truthfulness. Designing budget feasible
mechanisms even requires us to bound the threshold
payment of each individual, which, not surprisingly, is
tricky to analyze.

While the problem in general does not admit any
budget feasible mechanism2, Singer [21] studied an
important class of valuation functions, i.e., monotone
submodular functions. He gave a randomized truthful

1Note that if we do not consider truthful mechanism design,
the problem is purely an optimization question with an extra

capacity (i.e., budget) constraint, which has been well-studied
in, e.g., [17, 22, 13, 8, 14], in the framework of submodularity
with different conditions. It is well-known that a simple greedy

algorithm gives the best possible approximation ratio 1− 1/e [17]
for maximizing a monotone submodular function with a capacity

constraint. When agents are weighted (corresponding to costs in

our setting), the simple greedy algorithm may have an unbounded
approximation ratio [9]; a variant of the greedy algorithm which

picks the maximum of the original greedy solution and the

agent with the largest value yields the same approximation ratio
1− 1/e [13].

2For example, one with budget B = 1 would like to purchase

a path from s to t in a network {(s, v), (v, t)} where each edge
has incurred cost 0. In any truthful mechanism that guarantees
to buy the path (i.e., outputs the socially optimum solution), one

has to pay each edge the threshold value B, leading to a total
payment 2B which exceeds the given budget.
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Submodular functions Knapsack
deterministic randomized deterministic randomized

upper lower upper lower upper lower upper lower
Singer [21] − 2 233.83 − 5 2 − −
Our results 8.34∗ 1 +

√
2 7.91 2 2 +

√
2 1 +

√
2 3 2

*It may require exponential running time for general monotone submodular functions.

mechanism with a constant approximation ratio of
233.83 for any monotone submodular functions, and
deterministic mechanisms for special cases including
knapsack (ratio 5) and coverage. Further, he showed
that no deterministic truthful mechanism can obtain an
approximation ratio better than 2, even for knapsack.

1.1 Our Results. In this paper, we improve upper
and lower bounds of budget feasible mechanisms for
monotone submodular functions and knapsack, summa-
rized in the above table.

In truthful mechanism design, if there is no restric-
tion on total payment, it is sufficient to focus on design-
ing monotone allocations — the payment to each indi-
vidual winner is the unique threshold to maintain the
winning status [16]. With a sharp budget constraint,
in addition to designing monotone allocations, we have
to upper bound the sum of threshold payments. For
submodular functions, the natural greedy algorithm is
a good candidate for designing budget feasible mecha-
nisms due to its nice monotonicity and small approxi-
mation ratio. However, the threshold payment to each
winner can be very complicated because an agent can
manipulate its ranking position in the greedy algorithm,
which results in different computations of the marginal
contributions for the rest agents, and therefore unpre-
dictably change the set of winners. Singer [21] bounded
the threshold of each winner by considering all possible
ranking positions for his bid and taking the maximum
of the thresholds of all these positions. In Section 3, we
give a clean and tight analysis for the upper bound on
threshold payment by applying the combinatorial struc-
ture of submodular functions (Lemma 3.2). These up-
per bounds on payments suggest appropriate param-
eters in our randomized mechanism, which, roughly
speaking, selects the greedy algorithm or the agent with
the largest value at a certain probability.

A difficulty of deriving deterministic mechanisms is
related to the agent i∗ with the largest value v(i∗). The
greedy algorithm may not take it due to its (possibly
large) cost, which could result in a solution with an ar-
bitrarily bad ratio. However, we cannot simply compare
the solution of greedy algorithm with v(i∗) because this
breaks monotonicity as the agent i∗ is able to manipu-

late the greedy solution by his bid (this is exactly where
randomization helps). To get around of this issue, we
drop i∗ out of the market and compare v(i∗) with the
remaining agents in an appropriate way — now i∗ is
completely independent of the rest of the market and
cannot affect its output — this gives our determinis-
tic mechanisms for monotone submodular functions and
knapsack small approximation ratios (note that we still
need to be careful about the agents in the remaining
market as they are still able to manipulate their bids to
beat v(i∗)).

On the other hand, it is interesting to explore lim-
itations of budget feasible mechanisms. Singer gave a
simple lower bound of 2 on the approximation ratio and
proposed that exploring the lower bounds that are dic-
tated by budget feasibility is “perhaps the most inter-
esting question” [21]. In Section 4, we prove a stronger
lower bound of 1 +

√
2 for deterministic mechanisms.

In most lower bounds proofs for truthful mechanisms,
a number of related instances are constructed and one
shows that a truthful mechanism cannot do well for all
of them [5, 12, 18, 20]. (For example, in Singer’s proof,
three instances are constructed.) Our lower bound proof
uses a slightly different approach: We first establish a
property of a truthful mechanism for all instances pro-
vided that the mechanism has a good approximation
ratio (Lemma 4.1), then we conclude that this property
is inconsistent with the budget feasibility condition for
a carefully constructed instance. Furthermore, we show
a lower bound of 2 for universally randomized budget
feasible mechanisms. Both our lower bounds are in-
dependent of computational assumptions and hold for
instances with a small number of agents.

While submodular functions admit good approx-
imation budget feasible mechanisms, extending them
to more general functions seems to be a very difficult
task. It was proved that we do not have any good ap-
proximation mechanisms for instances like the path and
spanning tree [21]. In Section 5, we take a first step
of this generalization by considering an extended knap-
sack problem with heterogeneous items (i.e., a group
constraint), where items are of different types and we
are only allowed to pick one item from each type. Here
we cannot apply the same greedy mechanism for the
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original knapsack as it may not even generate a feasi-
ble solution; its approximation ratio can be arbitrarily
bad if we only take the first item from each type. To
construct a truthful mechanism with a good approxi-
mation, we employ a greedy strategy with deletions —
in the process of the greedy algorithm, we either add a
new item whose type has not been considered or replace
an existing item with the new one of the same type. Al-
though there are deletions, the greedy algorithm is still
monotone (but its proof is much more involved), based
on which we have similar approximation mechanisms for
heterogeneous knapsack. We believe that the greedy
strategy with deletions can be extended to a number
of interesting non-submodular settings to derive budget
feasible mechanisms with good approximations.

2 Preliminaries

In a marketplace there are n agents (or items), denoted
by A = {1, . . . , n}. Each agent i has a privately known
incurred cost ci (or denoted by c(i)). For any given
subset S ⊆ A of agents, there is a publicly known
valuation v(S), meaning the social welfare derived from
S. We assume v(∅) = 0 and v(S) ≤ v(T ) for any
S ⊂ T ⊆ A throughout this paper. We say the valuation
function is submodular if v(S)+v(T ) ≥ v(S∩T )+v(S∪
T ) for any S, T ⊆ A.

Upon receiving a bid cost bi from each agent, a
mechanism decides an allocation S ⊆ A as winners and
a payment pi to each i ∈ A. We assume that the mech-
anism has no positive transfer (i.e., pi = 0 if i /∈ S) and
is individually rational (i.e., pi ≥ bi if i ∈ S). Agents
bid strategically on their costs and would like to maxi-
mize their utilities, which is pi− ci if i is a winner and 0
otherwise. We say a mechanism is truthful if it is of the
best interests for each agent to report his true cost. For
randomized mechanisms, we consider universal truthful-
ness in this paper (i.e., a randomized mechanism takes
a distribution over deterministic truthful mechanisms).

Our setting is in single parameter domain, as each
agent has one private cost. It is well-known [16] that a
mechanism is truthful if and only if its allocation rule is
monotone (i.e., a winner keeps winning if he unilaterally
decreases his bid) and the payment to each winner is his
threshold bid (i.e., the maximal bid for which the agent
still wins). Therefore, we will only focus on designing
monotone allocations and do not specify the payment
to each winner explicitly.

A mechanism is said to be budget feasible if
∑
i pi ≤

B, where B is a given sharp budget constraint. Assume
without loss of generality that ci ≤ B for any agent i ∈
A, since otherwise he will never win in any (randomized)
budget feasible truthful mechanism. Our objective
is to design truthful budget feasible mechanisms with

outputs approximately close to the social optimum.
That is, we want to minimize the approximation ratio
of a mechanism, which is defined as max

I

opt(I)
M(I) , where

M(I) is the (expected) value of mechanism M on
instance I and opt(I) is the optimal value of the integer
program: max

S⊆A
v(S) subjected to c(S) ≤ B, where

c(S) =
∑
i∈S ci.

3 Budget Feasible Mechanisms

For any given monotone submodular function, we de-
note the marginal contribution of an item i with re-
spect to set S by mS(i) = v(S ∪ {i}) − v(S). We
assume that agents are sorted according to their non-
increasing marginal contributions relative to their costs,
recursively defined by: i + 1 = arg maxj∈A\Si

mSi
(j)

cj
,

where Si = {1, . . . , i} and S0 = ∅. To simplify no-
tations we will denote this order by [n] and write mi

instead of mSi−1(i). This sorting, in the presence of
submodularity, implies that

m1

c1
≥ m2

c2
≥ · · · ≥ mn

cn
.

Notice that v(Sk) =
∑
i≤kmi for all k ∈ [n].

The following greedy scheme is the core of our
mechanism (where the parameters denote the set of
agents A and available budget B/2).

Greedy-SM(A,B/2)

1. Let k = 1 and S = ∅
2. While k ≤ |A| and ck ≤ B

2
· mk∑

i∈S∪{k}mi

• S ← S ∪ {k}
• k ← k + 1

3. Return winning set S

Our mechanism for general monotone submodular func-
tions is as follows.3

Random-SM

1. Let A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A v(i)

2. with probability 0.4, return i∗

3. with probability 0.6, return

Greedy-SM(A,B/2)

3Our mechanism has a similar flavor to Singer’s mechanism [21]

for the greedy scheme and randomness between the greedy and

the item with the largest value. Indeed, both are due to the
algorithm that maximizes monotone submodular functions with

weighted items [13]. Our mechanism, however, treats the greedy

scheme and random selection in a slightly different way, which
yields a much better approximation ratio.
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In the above mechanism, if it returns i∗, the pay-
ment to i∗ is B; if it returns Greedy-SM(A,B/2), the
payment is more complicated and is given in [21]. Ac-
tually, we do not need this explicit payment formula to
prove our result.

Theorem 3.1. Random-SM is a budget feasible uni-
versally truthful mechanism for a submodular valuation
function with an approximation ratio of 5e

e−1 (≈ 7.91).

3.1 Analysis of Random-SM. In this subsection we
analyze Random-SM in terms of three respects: Truth-
fulness, budget feasibility and approximation. They to-
gether yield the proof for Theorem 3.1.

3.1.1 Universal Truthfulness. Our mechanism is
a simple random combination of two mechanisms. To
prove that the Random-SM is universally truthful, it
suffices to prove that these two mechanisms are truthful
respectively, i.e., the allocation rule is monotone.

The scheme where it simply returns i∗ is obviously
truthful. Also it is easy to see in the prior step that
throwing away the agents having costs greater than
B does not affect truthfulness. The greedy scheme
Greedy-SM(A,B/2) is monotone as well, since any
item out of a winning set cannot increase its bid to
become a winner.

3.1.2 Budget Feasibility. While truthfulness is
quite straightforward, the budget feasibility analysis
turns out to be quite tricky. The difficulties arise when
we compute the payment to each item. Indeed, it can
happen that an item changes its bid (while still remain-
ing in the winning set) to force the mechanism to change
its output. In other words, an item can control the out-
put of the mechanism. Fortunately, in such a case no
item can reduce the valuation of the output too much.
That enables us to write an upper bound on the bid of
each item in case of submodularity; summing up these
bounds yields budget feasibility.

If the mechanism returns i∗, his payment is B and
it is clearly budget feasible. It still remains to prove
budget feasibility for Greedy-SM(A,B/2). A similar
but weaker result has been proven in [21], using the
characterization of payments and arguing that the total
payment is not larger than B. Here we directly show
that the payment to any item i in the winning set S is
bounded above by mi

v(S) ·B; then the total payment will

be bounded by B since
∑

i∈S mi

v(S) · B = B. Before doing
that, we first prove a useful lemma.

Lemma 3.1. Consider any S ⊂ T ⊆ [n] and t0 =

arg maxt∈T\S
mS(t)
c(t) . Then

v(T )− v(S)
c(T )− c(S)

≤ mS(t0)
c(t0)

.

Proof. Assume for contradiction that the lemma does
not hold, then for all t ∈ T \ S, we have

v(T )− v(S)
c(T )− c(S)

>
mS(t)
c(t)

.

Then add all inequalities each multiplied by c(t)∑
t∈T\S c(t)

together, we have

v(T )− v(S)
c(T )− c(S)

>

∑
t∈T\SmS(t)∑
t∈T\S c(t)

=

∑
t∈T\SmS(t)

c(T )− c(S)
.

This implies that v(T ) − v(S) >
∑
t∈T\SmS(t), which

contradicts the submodularity. �

Let 1, . . . , k be the order of items in which we add
them to the winning set. Let ∅ = S0 ⊂ S1 ⊂ . . . ⊂
Sk ⊆ [n] be the sequence of winning sets that we pick
at each step by applying our mechanism. Thus we have
Sj = [j]. Now, since v is sumbodular, we can write
the following chain of inequalities (note that marginal
contribution is smaller for larger sets).

mS0(1)
c1

≥ mS1(2)
c2

≥ . . . ≥
mSk−1(k)

ck
≥ 2v(Sk)

B
.

The following is our main lemma.

Lemma 3.2. No item j ∈ S = Greedy-SM(A,B/2)
can bid more than mSj−1(j) B

v(S) and still get into the
winning set. Thus the payment to j is upper bounded by
mSj−1(j) B

v(S) .

Proof. Assume that S = Sk is the winning set and
there is j ∈ Sk such that it can bid bj > mSj−1(j) B

v(Sk)

and still win (given fixed bids of others). We will use
notation b instead of c to emphasize that we consider
a new scenario where j has increased its bid to bj and
others remain the same.

Note that

mS0(1)
c1

≥ mS1(2)
c2

≥ . . . ≥
mSj−1(j)

cj
≥
mSj−1(j)

bj
.

Thus the agents in Sj−1 still get into the winning set.
For bid vector b, the set we have chosen right before

j (denoted by T ) is included into the winning set. Thus,
by the rule of the greedy mechanism, we have

j = arg max
i∈[n]\T

mT (i)
bi

,(3.1)

mT (j)
bj

≥ 2v(T ∪ {j})
B

.(3.2)
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We may assume Sk ∪ T ⊃ T ∪ {j}. Indeed, otherwise
T ∪ {j} = Sk ∪ T and

mSj−1(j)
bj

≥ mT (j)
bj

≥ 2v(T ∪ {j})
B

≥ 2v(Sk)
B

≥ v(Sk)
B

.

Thus bj ≤ mSj−1
B

v(Sk) and we get a contradiction.
Let R = Sk \ T . Applying equation (3.1) and

Lemma 3.1 to Sk ∪ T and T ∪ {j}, we know that for
some r0 ∈ R \ {j},

v(Sk ∪ T )− v(T ∪ {j})
b(Sk ∪ T )− b(T ∪ {j})

≤
mT∪{j}(r0)

b(r0)
≤ mT (j)

bj
.

On the other hand, since bj > mSj−1(j) B
v(Sk) , we

have
mT (j)
bj

<
mT (j)
mSj−1(j)

v(Sk)
B

<
v(Sk)
B

.

Combining these inequalities, we get

v(Sk ∪ T )− v(T ∪ {j})
b(Sk ∪ T )− b(T ∪ {j})

<
v(Sk)
B

.

We have

b(Sk∪T )−b(T ∪{j}) = b(R\{j}) = c(R\{j}) ≤ c(Sk).

Recall that
mSi−1 (i)

ci
≥ 2v(Sk)

B for i ∈ [k]. Thus

ci ≤ mSi−1(i) B
2v(Sk) and c(Sk) =

∑k
i=1 c(i) ≤

B
2 . We

get

v(Sk)− v(T ∪ {j})
B/2

≤ v(Sk)− v(T ∪ {j})
c(Sk)

≤ v(Sk ∪ T )− v(T ∪ {j})
b(Sk ∪ T )− b(T ∪ {j})

<
v(Sk)
B

Thus, v(Sk) < 2v(T ∪ {j}).
Applying inequality (3.2) we derive

mSj−1(j)
bj

≥ mT (j)
bj

≥ 2v(T ∪ {j})
B

>
v(Sk)
B

,

which is contradictory to the fact that bj >
mSj−1(j) B

v(Sk) . �

3.1.3 Approximation Ratio. Before analyzing the
performance of our mechanism, we consider the fol-
lowing simple greedy algorithm (without considering
bidding strategies): Order items according to their
marginal contributions divided by costs and add as
many items as possible (i.e., it stops when we cannot
add the next item as the sum of ci otherwise will be

bigger than B). Moreover we can consider the frac-
tional variant of that, i.e., for the remaining budget we
take a portion of the item at which we have stopped.
Let ` be the maximal index for which

∑
i=1,...,` ci ≤ B.

Let c′`+1 = B −
∑
i=1,...,` ci and m′`+1 = m`+1 ·

c′`+1
c`+1

.
Hence, the fractional greedy solution is defined as

fgre(A) ,
∑̀
i=1

mi +m′`+1.

It is well-known that the greedy algorithm is a
1−1/e approximation of maximizing monotone submod-
ular functions with a cardinality constraint [17]. Also it
was shown that the simple greedy algorithm has an un-
bounded approximation ratio in case of weighted items
with a capacity constraint. Nevertheless, a variant of
greedy algorithm was suggested in [13] which gives the
same 1− 1/e approximation to the weighted case. The
following lemma, which is fundamental to our analysis,
establishes the same approximation ratio for the frac-
tional greedy algorithm described above. (The proof is
deferred to Appendix A.)

Lemma 3.3. The fractional greedy solution has an ap-
proximation ratio of 1−1/e for the weighted submodular
maximization problem. That is,

fgre(A) ≥ (1− 1/e) · opt(A),

where opt(A) is the value of the optimal integral solution
for the given instance A.

Now we are ready to analyze the approximation ra-
tio of the mechanism Random-SM. Let S = {1, . . . , k}
be the subset returned by Greedy-SM(A, B2 ). For any
j = k + 1, . . . , `, we have

cj
mj
≥ ck+1

mk+1
>

B

2
∑k+1
i=1 mi

,

where the last inequality follows from the fact that the
greedy strategy stops at item k + 1. Hence, we have
cj > B · mj

2
∑k+1

i=1 mi
. The same analysis shows that

c′`+1 > B · m′`+1

2
∑k+1

i=1 mi
. Therefore,

B ·
∑`
j=k+1mj +m′`+1

2
∑k+1
i=1 mi

<
∑̀
j=k+1

cj + c′`+1 ≤ B.

This implies that 2
∑k+1
i=1 mi >

∑`
j=k+1mj +m′`+1 and
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mk+1 + 2
∑k
i=1mi >

∑`
j=k+2mj +m′`+1. Hence,

fgre(A) =
∑̀
i=1

mi +m′`+1

=
k+1∑
i=1

mi +
∑̀
j=k+2

mj +m′`+1

< 3
∑
i∈S

mi + 2mk+1

≤ 3
∑
i∈S

mi + 2v(i∗)

Together with Lemma 3.3, we can bound the opti-
mal solution as
(3.3)
opt(A) ≤ e

e− 1

(
3Greedy-SM(A,B/2) + 2v(i∗)

)
.

Therefore, the expected value of our randomized mech-
anism is 3

5Greedy-SM(A,B/2) + 2
5v(i∗) ≥ e−1

5e opt.

3.2 Deterministic Mechanism. In this section, we
provide a deterministic truthful mechanism which is
budget feasible and has a constant approximation ratio.
In the following description, opt(A\{i∗}, B) denotes the
value of the optimal solution for the weighted submodu-
lar maximization problem for the given instance A\{i∗}
with budget B.

Deterministic-SM

1. Let A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A v(i)

2. If
1+4e+

√
1+24e2

2(e−1)
· v(i∗) ≥ opt(A \ {i∗}, B),4

return i∗

3. Otherwise, return Greedy-SM(A,B/2)

4Our deterministic mechanism in general is not in polynomial

time because of the hardness of computing an optimal solution for
submodular maximization problems. However, we may substitute
it by the optimum of the fractional problem; therefore for special

problems like knapsack (discussed in the following subsection),
we can get a polynomial time deterministic mechanism. Note

however that we cannot replace it by the simple greedy solution

as it breaks monotonicity.
Indeed, even if one is given unbounded computational power,

we are still unable to solve the budget feasible mechanism
design problem optimally (in particular, our lower bounds in
the subsequent section still apply). Our mechanism suggests a

natural question on the power of computation in (budget feasible)
mechanism design at the price of being truthful [19, 6]. In
particular, can an (exponential runtime) mechanism beat the

lower bound of all polynomial time mechanisms? We leave this
as future work.

Theorem 3.2. Deterministic-SM is a determinis-
tic budget feasible truthful mechanism for monotone
submodular functions with an approximation ratio of
6e−1+

√
1+24e2

2(e−1) (≈ 8.34).

Proof. Note that the bid of i∗ is independent to the
value of opt(A \ {i∗}, B). Therefore, the mechanism
is truthful (a detailed similar argument is given in
the proof of Theorem B.1 in Appendix B). Budget
feasibility follows from Lemma 3.2 and the observation
that Step 2 only gives additional upper bounds on the
thresholds of winners from Greedy-SM(A,B/2).

If the following, we prove the approximate ratio.
Let

x =
1 + 4e+

√
1 + 24e2

2(e− 1)
(≈ 7.34).

We observe that

opt(A,B)− v(i∗) ≤ opt(A \ {i∗}, B) ≤ opt(A,B).

If the condition in Step 2 holds and the mechanism
outputs i∗, then

opt(A,B) ≤ opt(A \ {i∗}, B) + v(i∗) ≤ (x+ 1) · v(i∗).

Otherwise, the condition in Step 2 fails and the mecha-
nism outputs Greedy-SM(A,B/2) in Step 3. Applying
formula (3.3), we have

x · v(i∗) < opt(A \ {i∗}, B)
≤ opt(A,B)

≤ e

e− 1

(
3Greedy-SM(A,B/2) + 2v(i∗)

)
.

This implies that

v(i∗) ≤ 3e
x(e− 1)− 2e

Greedy-SM(A,B/2).

Hence,

opt ≤ e

e− 1

(
3Greedy-SM(A,B/2) + 2v(i∗)

)
≤ e

e− 1

(
3 +

6e
x(e− 1)− 2e

)
·Greedy-SM(A,B/2).

Simple calculations show that

1 + x =
6e− 1 +

√
1 + 24e2

2(e− 1)

=
e

e− 1

(
3 +

6e
x(e− 1)− 2e

)
.

Therefore, we have opt ≤ (x+1) ·Greedy-SM(A,B/2)
in the both cases, which concludes the proof of the claim
with an approximation ratio of e

e−1

(
3 + 6e

x(e−1)−2e

)
(≈

8.34). �
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3.3 Improved Mechanisms for Knapsack. In
this subsection, we consider a special model of submod-
ular functions where the valuations of agents are ad-
ditive, i.e., v(S) =

∑
i∈S vi for S ⊆ [n]. This leads

to an instance of the Knapsack problem, where items
correspond to agents and the size of the knapsack corre-
sponds to budget B. Singer [21] gave a 5-approximation
deterministic mechanism. By applying approaches from
the previous subsections, we have the following results
(proofs are deferred to Appendix B).

Theorem 3.3. There are 2 +
√

2 approximation deter-
ministic and 3 approximation randomized polynomial
truthful budget feasible mechanisms for knapsack.

4 Lower Bounds

In this section we focus on lower bounds for the approx-
imation ratio of truthful budget feasible mechanisms for
knapsack. Note that the same lower bounds can be ap-
plied to the general monotone submodular functions as
well. In [21], a lower bound of 2 is obtained by the
following argument: Consider the case with two items,
both of unit value (the value of two items together is 2).
If their costs are (B− ε, B− ε), at least one item should
win, otherwise the approximation ratio is infinite. With-
out loss of generality, we can assume that the first item
wins, and as a result its payment is at least B− ε. Now
consider another profile (ε, B − ε), the first item should
also win (due to monotonicity) and get payment of at
least B− ε by truthfulness. The second item then could
not win because of the budget constraint and individual
rationality. Therefore, the mechanism can only achieve
a value of 1 for that instance while the optimal solution
is 2. This gives us the lower bound of 2.

We improve the deterministic lower bound to 1+
√

2
by a more involved proof. We also prove a lower bound
of 2 for universally randomized truthful mechanisms.
All our lower bounds are unconditional, which implies
that we do not impose any complexity assumptions
and constraints of the running time on the mechanism.
Our lower bounds rely only on truthfulness and budget
feasibility.

4.1 Deterministic Lower Bound

Theorem 4.1. No deterministic truthful budget feasi-
ble mechanism can achieve an approximation ratio bet-
ter than 1 +

√
2, even if there are only three items.

Assume otherwise that there is a budget feasible
truthful mechanism that can achieve a ratio better than
1 +
√

2. We consider the following scenario: Budget
B = 1, and values v1 =

√
2, v2 = v3 = 1. Then

the mechanism on a scenario has the following two

properties: (i) If all items are winners in the optimal
solution, the mechanism must output at least two items;
and (ii) if {1, 2} or {1, 3} is the optimal solution, the
mechanism cannot output either {2} or {3} (i.e., a single
item with unit value). For any item i, let function
pi(cj , ck) be the payment offered to item i given that
the bids of the other two items are cj and ck. That is,
pi(cj , ck) is the threshold bid of i to be a winner.

Lemma 4.1. For any c3 > 0.5 and any domain (a, b) ⊂
(0, 1 − c3), there is c2 ∈ (a, b) such that p1(c2, c3) <
1− c2.

Proof. Assume otherwise that there are c3 > 0.5 and
domain (a, b) ⊂ (0, 1 − c3) such that for any c2 ∈
(a, b), p1(c2, c3) ≥ 1 − c2. Let c1 = 1 − c3 − b, then
c1 + c2 + c3 < 1 = B, which implies that the mechanism
has to output at least two items. Since 0 < c1 =
1 − c3 − b < 1 − c2 ≤ p1(c2, c3), item 1 is a winner.
Further, p1(c2, c3) ≥ 1 − c2 > 0.5, which together
with budget feasibility implies that item 3 cannot be
a winner. Therefore, item 2 must be a winner with
payment p2(c1, c3) = c2 due to individual rationality
and budget feasibility. The same analysis still holds if
the true cost of item 2 becomes c′2 = c2+b

2 , i.e., item 2
is still a winner with payment c′2. Thus for the sample
(c1, c2, c3) the payment satisfies p2(c1, c3) ≥ c′2 > c2, a
contradiction. �

Since item 2 and 3 are identical, the above lemma
still holds if we switch item 2 and 3 in the claim. We
are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Define c3 = 0.7 and (a, b) =
(0.2, 0.3). Note that c3 and (a, b) satisfy the condition
of Lemma 4.1. Hence, there is c ∈ (0.2, 0.3) such
that p1(c, 0.7) < 1 − c. Define p1(c, 0.7) = 1 − c −
x, where x > 0. Symmetrically, define c2 = 0.7 and
(a′, b′) = (c,min{0.3, c + x}). Again by Lemma 4.1,
there is d ∈ (a′, b′) such that p1(0.7, d) < 1 − d.
Define p1(0.7, d) = 1 − d − y, where y > 0. Pick
c1 = 1 − d − ε, where ε > 0 is sufficiently small so
that c1 ∈ (1− c−x, 1− c)∩ (1−d− y, 1−d). Note that
since d ∈ (c, c+ x), c1 is well-defined.

Consider a true cost vector (c1, c, 0.7). Since
p1(c, 0.7) = 1 − c − x < c1, item 1 cannot be a win-
ner. Since c1 + c = 1 − d − ε + c < 1, the optimal
solution has a value of at least v1 + v2 = 1 +

√
2; there-

fore the mechanism has to output both items 2 and 3.
Hence, p3(c1, c) ≥ c3 = 0.7.

Similarly, consider true cost vector (c1, 0.7, d); we
have p2(c1, d) ≥ c2 = 0.7. Finally, consider cost vector
(c1, c, d). By the above two inequalities, both items
2 and 3 are the winners; this contradicts the budget
feasibility.
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Figure 1: Distribution for n = 6. Width of a point
emphasizes its probability.

4.2 Randomized Lower Bound

Theorem 4.2. No randomized (universally) truthful
budget feasible mechanism can achieve an approxima-
tion ratio better than 2, even in the case of two items.

Proof. We use Yao’s min-max principle, which is a
typical tool used to prove lower bounds, where we need
to design a distribution of instances and argue that any
deterministic budget feasible mechanism cannot get an
expected approximation ratio which is better than 2.

All the instances contain two items both with value
1. Their costs (c1, c2) are drawn from the following
distribution (see Fig. 1 for an example):

1. (kBn ,
(n−k)B

n ) with probability 1−ε
n−1 , where k =

1, 2, . . . , n− 1,

2. ( iBn ,
jB
n ) with probability 2ε

(n−1)(n−2) , where i, j ∈
{1, . . . , n− 1} and i+ j > n,

where 1 > ε > 0 and n is a large integer.
We first claim that for any deterministic truthful

budget feasible mechanism with finite expected approx-
imation ratio, there is at most one instance, for which
both items win in the mechanism. Assume for con-
tradiction that there are at least two such instances.
Note that for the second distribution ( iBn ,

jB
n ), where

i + j > n, it cannot be the case that both items win
due to the budget constraint. Hence, the two instances
must be of the first type; denote them as (k1Bn , (n−k1)B

n )
and (k2Bn , (n−k2)B

n ), where k1 > k2. Consider then
the instance (k1Bn , (n−k2)B

n ) . Since k1 + n − k2 > n,
this is the instance of the second type in our distribu-
tion. Therefore it has nonzero probability (see Fig. 1).
The mechanism has a finite approximation ratio, thus it

should have a finite approximation ratio on the instance
(k1Bn , (n−k2)B

n ) as well. As a result, it cannot be the case
that both items lose. We assume that item 1 wins (the
proof for the other case is similar); the payment to him
is at least k1B

n due to individual rationality. Then con-
sider the original instance (k2Bn , (n−k2)B

n ); item 1 should
also win and get a threshold payment, which is equal to
or greater than k1B

n . Therefore the payment to the sec-
ond item is at most B − k1B

n = (n−k1)B
n because of the

budget constraint. Since (n−k1)B
n < (n−k2)B

n , we ar-
rive at a contradiction with either individual rationality
or the assumption that both items won in the instance
(k2Bn , (n−k2)B

n ).
On the other hand, for all instances (kBn ,

(n−k)B
n ),

both items win in the optimal solution with value
2. Hence, the expected approximation ratio of any
deterministic truthful budget feasible mechanism is at
least 1−ε

n−1 · 1 + (n− 2) · 1−ε
n−1 · 2 + ε · 1 = 2− ε− 1−ε

n−1 . The
ratio approaches 2 when ε→ 0 and n→∞. �

5 Beyond Submodularity

A natural generalization of knapsack is to consider
heterogeneous items, i.e., items are partitioned into
groups and we can select at most one item from each
group. Formally, we are given m different types of items
and each item has a (private) cost ci and a (public) value
vi, as well as an indicator ti ∈ [m] standing for the type
of item i. The goal is to pick items of different types5

to maximize the total value given a budget constraint
B. The knapsack problem studied in the last section is
therefore a special case of the heterogeneous problem
when all items are of different types. However, we
cannot simply apply the mechanisms for knapsack here
because of heterogeneity. (Notice however that the
lower bounds established in the last section still work.)

The main difference of this problem with knapsack
or general monotone submodular functions is that here
not every subset is a feasible solution6. A straightfor-

5One may consider a relaxed version of heterogeneous knap-

sack, where any subset is feasible and its value is defined to be the
sum of the maximum values of all types. That relaxed version is

also known as a OXS function, a subclass of submodular functions

defined in [15]; hence, our mechanisms for submodular functions
can be applied here.

6For example, in some advertising markets, it is required that
competitors’ ads cannot be listed together due to negative exter-
nalities. This extra constraint that one cannot pick more than
one item from the same type makes our problem different from

the relaxed problem. In particular, we cannot treat our hetero-
geneous knapsack as a submodular function problem. Moreover,
it does not even belong to XOS, a quite general class of valu-

ation functions defined in [15] containing OXS and submodular
functions.
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ward greedy algorithm could end up with a very poor
solution: Consider a situation where every type contains
one very small item (both vi and ci are very small) but
with a large value cost ratio of vi

ci
; greedy algorithm will

take all these small items first and therefore not be able
to take more since each type already has one item. The
overall value of this greedy solution can be arbitrarily
bad compared to the optimal solution.

To construct a truthful mechanism for heteroge-
neous knapsack, we employ a greedy strategy with dele-
tions. The main idea is that at every time the algo-
rithm making a greedy move, we consider two possible
changes: (i) Add a new item whose type has not been
considered before, or (ii) replace an existing item with
a new one of same type. Among all the possible choices
(of two cases), we greedily select items with the highest
value to cost ratio: In the case of adding a new item,
its value cost to ratio is defined as usually vi

ci
. For the

replacement case where we replace i with j, its marginal
value is vj − vi and marginal cost is cj − ci, and hence
its value to cost ratio is defined as vj−vi

cj−ci
.

As before, now we assume that all the items are
ordered according to their appearances in the greedy
algorithm (note that some items never appear in the
algorithm and we simply ignore them). The following
greedy strategy is similar to what we did for the
knapsack problem. In Appendix C, we prove that it
is monotone (therefore truthful) and budget feasible.
(Here for notational simplicity, assume that we already
take an item with c = 0 and v = 0 for each type, thus
every greedy step can be viewed as a replacement.)

Greedy-HK

1. Let k = 1, S = ∅, and last[j] = 0 for j ∈ [m]

2. While k ≤ |A| and
c(k)− c(last[tk]) ≤ B · v(k)−v(last[tk])

v(k)−v(last[tk])+
∑

i∈S v(i)

• let S ← (S \ {last[tk]}) ∪ {k}
• let last[tk] = k

• let k ← k + 1

3. Return winning set S

By applying the above Greedy-HK, we have the
following claim for heterogeneous knapsack. (Details
can be found in Appendix C.)

Theorem 5.1. There are 2 +
√

2 approximation deter-
ministic and 3 approximation randomized polynomial
truthful budget feasible mechanisms for knapsack with
heterogeneous items.

Finally, we comment that greedy approach is typi-
cally the first choice when one considers designing truth-

ful mechanisms because it usually has a nice monotone
property. However, when we allow cancelations in the
greedy process, its monotonicity may fail. In the hetero-
geneous knapsack problem, fortunately Greedy-HK is
still monotone (although its proof is much more in-
volved) and therefore we are able to apply it to design
truthful mechanisms with good approximation ratios.
Our idea sheds light on the possibility of exploring bud-
get feasible mechanisms in larger domains beyond sub-
modularity.
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A Proof of Lemma 3.3

Proof. Let wi denote the weight of each item i ∈ [n].
Our goal in the weighted problem is to pick a set S
with total weight

∑
i∈S wi not exceeding given capacity

W of maximal possible utility u(S), where u is the given
monotone submodular function. As the utility uf (Sf )
is for fractional problem we consider the expectation
of u(S), where each i ∈ [n] is selected at random
independently in S with probability equal to the fraction
of item i in Sf .

Assume that all weights wi are integers. We reduce
our weighted problem with monotone submodular func-
tion u to the unweighted one as follows.

• For each item i ∈ [n] we consider wi new items of
unit weight. Denote them as ij for j ∈ [wi] and call
i the type of the unit ij .

• The new valuation function ν only depends on the
amounts of unit items of each type.

• Let a set S contain ai units of each type i. In-
dependently for each type, pick at random in the
set R with probability ai

wi
weighted item i. Define

ν(S) = E(u(R)).

Therefore

ν(S) =
1

w1 · . . . · wn

∑
π

u (S · π)

where π is a sampling of units one for each type (there
are w1 · . . . ·wn variants for π); S · π is a vector of types
at which π hits S.

Using this formula it is not hard to verify mono-
tonicity and submodularity of ν. Indeed, e.g. to ver-
ify submodularity one only needs to check that the
marginal contribution of any unit is smaller for a large
set, i.e., for S ⊂ T and ij /∈ T verify inequality
ν(S ∩{ij})−ν(S) ≥ ν(T ∩{ij})−ν(T ), which is pretty
straightforward.

For any T ⊆ [n] if we consider a set of units
S = {ik|i ∈ T, 1 ≤ k ≤ wi}, then according to the
definition ν(S) = u(T ). Hence, the optimal solution to
the unit weights problem is equal to or larger than the
optimal solution to the original problem.

To conclude the proof it is only left to show that
our fractional greedy scheme for an integer weighted
instance gives us the same result as the greedy scheme
for its unit weighted version. Note that once we have
taken a unit of type i we will proceed to take units of
type i until it is exhausted completely (we brake ties
in favor of the last type we have picked). Indeed, let
ik, ik+1 /∈ S then

ν(S ∪ {ik})− ν(S)
= ν(S ∪ {ik+1})− ν(S)

=
1

w1 · . . . · wn

∑
{π|ik+1∈π}

u (S ∪ {ik+1} · π)− u (S · π)

=
1

w1 · . . . · wn

∑
{π|ik+1∈π}

u (S ∪ {ik, ik+1} · π)

−u (S ∪ {ik} · π)
= ν(S ∪ {ik, ik+1})− ν(S ∪ {ik})

Therefore, the marginal contribution of the type i
does not decrease if we include in the solution units of
type i. On the other hand, because ν is submodular, the
marginal contribution of any other type cannot increase.
So we will take unit ik+1 right after ik.

Assume we already have picked set S and now are
picking the first unit of a type i. Hence, S comprises all
units of a type set T . Then we have

ν (S ∪ {i1})− ν (S)

=
1∏n

k=1 wk

∑
{π|i1∈π}

u (S ∪ {i1} · π)− u (S · π)

=

∏
k 6=i wk∏n
k=1 wk

mT (i) =
mT (i)
wi

Thus i = argmaxi/∈T
mT (i)
wi

which coincides with the
rule of our fractional greedy scheme.

In case of wi being real weights the same approach
can be applied but in a more tedious way. �
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B Mechanisms for Knapsack

In this section, we describe our deterministic and ran-
domized mechanisms for knapsack, yielding a proof for
Theorem 3.3.

B.1 Deterministic Mechanism. We consider the
following greedy strategy studied by Singer [21].

Greedy-KS(A)

1. Order all items in A s.t. v1
c1
≥ v2

c2
≥ · · · ≥

v|A|
c|A|

2. Let k = 1 and S = ∅
3. While k ≤ |A| and ck ≤ B · vk∑

i∈S∪{k} vi

• S ← S ∪ {k}
• k ← k + 1

4. Return winning set S

It is shown that the above greedy strategy is mono-
tone (and therefore truthful). Actually, it has the fol-
lowing remarkable property: Any i ∈ S cannot control
the output set given that i is guaranteed to be a winner.
That is, if the winning sets are S and S′ when i bids ci
and c′i, respectively, where i ∈ S∩S′, then S = S′. Oth-
erwise, consider the item i0 /∈ S ∩ S′ with the smallest
index; assume without loss of generality that i0 ∈ S\S′.
Let T = {j ∈ S∩S′ | j < i0, j 6= i} be the winning items
in S ∩ S′ \ {i} before i0. Then

ci0 ≤ B ·
vi0∑
j∈S vj

≤ B · vi0∑
j∈T vj + vi + vi0

,

which implies that i0 should be a winner in S′ as well,
a contradiction.

Given the greedy strategy described above, our
mechanism for knapsack is as follows (where fopt(A)
denotes the value of the optimal fractional solution; for
knapsack it can be computed in polynomial time).

Deterministic-KS

1. Let A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A vi

2. If (1 +
√

2) · vi∗ ≥ fopt(A \ {i∗}), return i∗

3. Otherwise, return S = Greedy-KS(A)

Theorem B.1. Deterministic-KS is a 2 +
√

2 ap-
proximation deterministic budget feasible truthful mech-
anism for knapsack.

Proof. The proof consists of each property stated in the
claim.

• Truthfulness. We analyze monotonicity of the
mechanism according to the condition of Steps 2
and 3, respectively. If i∗ wins in Step 2 (note that
the fractional optimal value computed in Step 2 is
independent of the bid of i∗), then i∗ still wins if
he decreases his bid.

If the condition in Step 2 fails and the mechanism
runs to Step 3, for any i ∈ S, the subset S
remains the same if i decreases his bid. Note that
if i 6= i∗, when i decreases his bid, the value of
the fractional optimal solution computed in Step 2
will not decrease. Hence i is still a winner, which
implies that the mechanism is monotone.

• Individual rationality and budget feasibility. If i∗

wins in Step 2, his payment is the threshold bid B.
Otherwise, assume that all buyers in A are ordered
by 1, 2, . . . , n; let S = {1, . . . , k}. Note that it is
possible that i∗ ∈ S. For any i ∈ S, let qi be
the maximum cost that i can bid such that the
fractional optimal value on instance A \ {i∗} is still
larger than (1 +

√
2)vi∗ . Note that ci ≤ qi and as

opposed to general submodular case the marginal
contribution vi does not depend on the ranking of
i.

Thus, the payment to any winner i ∈ S \ {i∗} is

pi = min

{
vi ·

ck+1

vk+1
, B · vi∑

j∈S vj
, qi

}
,

and

pi∗ = min

{
vi∗ ·

ck+1

vk+1
, B · vi∗∑

j∈S vj

}
,

if i∗ ∈ S. It can be seen that the mechanism is
individually rational. Further,

∑
i∈S pi ≤

∑
i∈S B ·

vi∑
j∈S vj

= B, which implies that the mechanism is
budget feasible.

• Approximation. Assume that all buyers in A are
ordered by 1, 2, . . . , n, and T = {1, . . . , k} is the
subset returned by Greedy-KS(A). Let ` be the
maximal item for which

∑
i=1,...,` ci ≤ B. Let

c′`+1 = B −
∑
i=1,...,` ci and v′`+1 = v`+1 ·

c′`+1
c`+1

.
Hence, the optimal fractional solution is

fopt(A) =
∑̀
i=1

vi + v′`+1

For any j = k + 1, . . . , `, we have

cj
vj
≥ ck+1

vk+1
>

1
vk+1

·B · vk+1∑k+1
i=1 vi

,

695 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



where the last inequality follows from the fact that
the greedy strategy stops at item k + 1. Hence,
cj > B · vj∑k+1

i=1 vi
. The same analysis shows c′`+1 >

B · v′`+1∑k+1
i=1 vi

. Therefore,

B ·
∑`
j=k+1 vj + v′`+1∑k+1

i=1 vi
<
∑̀
j=k+1

cj + c′`+1 < B,

which implies that
∑k
i=1 vi >

∑`
j=k+2 vj + v′`+1.

Hence,

fopt(A) =
∑̀
i=1

vi + v′`+1 < 2
∑
i∈S

vi + vi∗

A basic observation of the mechanism is that

fopt(A)− vi∗ ≤ fopt(A \ {i∗}) ≤ fopt(A)

Hence, if the condition in Step 2 holds and the
mechanism outputs i∗, we have

fopt(A) ≤ fopt(A \ {i∗}) + vi∗ ≤ (2 +
√

2) · vi∗

If the condition in Step 3 fails and the mechanism
outputs S in Step 4, we have

(1 +
√

2) · vi∗ < fopt(A \ {i∗})
≤ fopt(A)

< 2
∑
i∈S

vi + vi∗

which implies that vi∗ <
√

2 ·
∑
i∈S vi. Hence,

opt(A) ≤ fopt(A) =
∑

i=1,...,`

vi + v′`+1

< 2
∑
i∈S

vi + vi∗

≤ (2 +
√

2) ·
∑
i∈S

vi.

Therefore, the mechanism is a (2+
√

2) approxima-
tion.

�

B.2 Randomized Mechanism. Our randomized
mechanism for knapsack is as follows.

Random-KS

1. Let A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A vi

2. With probability 1
3
, return i∗

3. With probability 2
3
, return Greedy-KS(A)

Theorem B.2. Random-KS is a 3 approximation
universal truthful budget feasible mechanism for knap-
sack.

Proof. Since both mechanisms in Steps 2 and 3 are
budget feasible and truthful, it is left only to prove the
approximation ratio.

Using the same notation and argument in the proof
of Theorem B.1, assume that all buyers in A are ordered
by 1, 2, . . . , n, and T = {1, . . . , k} is the subset returned
by Greedy-KS(A). Let ` be the maximal item for
which

∑
i=1,...,` ci ≤ B. Let c′`+1 = B −

∑
i=1,...,` ci

and v′`+1 = c′`+1 ·
v`+1
c`+1

. Hence, the optimal fractional
solution is

fopt(A) =
∑̀
i=1

vi + v′`+1

and

fopt(A) =
∑̀
i=1

vi + v′`+1 < vi∗ + 2
∑
i∈S

vi.

The excepted value of Random-KS is therefore

1
3
vi∗ +

2
3

∑
i∈S

vi =
1
3

(
vi∗ + 2

∑
i∈S

vi

)
>

1
3
opt

which completes the proof. �

C Knapsack with Heterogeneous Items

In this section we analyze the heterogeneous knapsack
problem and Greedy-HK, which leads to a proof of
Theorem 5.1.

C.1 Optimal Fractional Solution. We start our
study again on fractional solutions to the optimization
problem. First we have to define what is a fractional
relaxation for heterogeneous knapsack or more precisely
what is a feasible fractional solution.

A feasible solution for heterogeneous knapsack is an
n-tuple of real numbers (α1, . . . , αn) ∈ [0, 1]n satisfying∑n
i=1 αici ≤ B and

∑
i∈t−j

αi ≤ 1 for any j ∈ [m].
An optimal fractional solution is a feasible solution that
maximizes

∑n
i=1 αivi.

We have the following observation on the optimal
solution.

Lemma C.1. For a given budget B we can pick an
optimal fractional solution fOPT such that

• there are at most two nonzero amounts of items of
any type in fOPT .

• there is exactly one item of any type in fOPT except
maybe only for one type.
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Proof. Consider any optimal solution f
′

OPT . Fix the
price pj spent on the particular type j in it. We can use
only two items of type j in order to provide the max-
imum value for the price pj . Indeed, if one draws all
items of type j in the plain with the x-coordinate corre-
sponding to the cost and the y-coordinate corresponding
to the value of an item together with the point (0, 0),
then the condition

∑
i∈t−j

αi ≤ 1 will describe a point
in the convex hull of the drawn set.

Thus we can take fOPT with at most two items of
a type and derive the first part of the lemma.

One can derive the second part of the lemma by
changing pj1 and pj2 in fOPT such that pj1 +pj2 remains
constant. Indeed, appealing to the picture again, we
consider two convex polygons P1 and P2 for the types j1
and j2. If both prices pj1 and pj2 get strictly inside the
corresponding sides of those polygons, then by stirring
pj1 and pj2 in fOPT and keeping pj1 + pj2 constant we
can get to a vertex of P1 or P2 that does not decrease
the total value. �

The following algorithm computes an optimal frac-
tional solution for heterogeneous knapsack. (For con-
venience we add an item numbered by 0 of a new type
with cost 0 and value 0; this does not affect any optimal
solution.)

Fraction-HK

1. For each type j ∈ [m], (partially) order

items of type j as follows:

• let last = 0, tg = 0 and Aj = ∅
• while v(last) < max

i∈t−j
v(i)

– let k = arg max
i∈t−j

v(i)−v(last)
|c(i)−c(last)|

and add k to Aj

– define tgk = v(k)−v(last)
|c(k)−c(last)|

– let last = k

2. Comprise all Aj into one big set A and

order all items s.t. tg1 ≥ · · · ≥ tg|A|
3. Let last[j] = 0 for each j ∈ [m], αi = 0 for

each i ∈ [n] and k = 1

4. While k ≤ |A| and ck +
∑k−1
i=1 αi · ci ≤ B

• let αlast[tk] ← 0

• let last[tk]← k, αk ← 1

• let k ← k + 1

5. If k ≤ |A|, then let αk =
B−

∑k−1
i=1 αici

ck

and αlast[tk] = 1− αk
6. Return vector (αi)i∈[n]

v

ctg1

tg2

tg3

Figure 2: Convex hull

Theorem C.1. Fraction-HK computes an optimal
fractional solution for heterogeneous knapsack.

Proof. If we draw every item i ∈ t−j ∪ {0} as a
point (ci, vi) in the plain (see Fig. 2), then all picked
items in Aj will correspond to the part of the convex
hull’s vertices of the drawn set from (0, 0) to the item
with maximal value. The computed value of tg will
correspond then to the tangent of the side of the convex
hull with the right end at the given item.

As in the proof of lemma C.1 one can find the
optimal value, that we can get for a type j at the price
c, by taking the y-coordinate of the point on a side of
the convex hull with c at the x-coordinate. Thus for
the optimal fractional solution we only need items from
A = ∪jAj .

Taking everything above into account we can re-
duce the heterogeneous knapsack to the basic knapsack
problem. Fix a type j and construct the instance of the
reduced problem K̃j as follows. For each item k ∈ Aj
assign the cost c̃k := ck − c(last[tk]) and the value
ṽk := vk − v(last[tk]). It is easy to see that the op-
timal solution to the basic knapsack problem K̃j gives
the same value as the solution to the original heteroge-
neous problem restricted to the items of type j for any
given budget. Hence the optimal fractional solution to
basic knapsack problem ∪jK̃j has the same value as the
optimal fractional solution to the original problem.

Now it is easy to check that our algorithm at stages
2 − 5 computes the optimal fractional solution to the
reduced knapsack problem and thus finds the optimal
fractional solution to our original problem. �

C.2 Greedy Strategy with Deletions. We con-
sider the following greedy strategy mechanism.
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Greedy-HK

1. Take the same ordered set A as in Step 2

of Fraction-HK

2. Let k = 1, S = ∅, and last[j] = 0 for j ∈ [m]

3. While k ≤ |A| and
c(k)− c(last[tk]) ≤ B · v(k)−v(last[tk])

v(k)−v(last[tk])+
∑

i∈S v(i)

• let S ← (S \ {last[tk]}) ∪ {k}
• let last[tk] = k

• let k ← k + 1

4. Return winning set S

Recall the notation in the algorithm Fraction-

HK, tgk = v(k)−v(last[tk])
|c(k)−c(last[tk])| , where last[tk] is the last item

of type tk in A at the moment when we are about to
add k into A. Define Sk = (S \ {last[tk]) ∪ {k}. Then
the second condition in Step 3 of Greedy-HK can be
rewritten as

tgk ≥
v(Sk)
B

We next analyze the mechanism Greedy-HK. Let
us denote by Mb the run of mechanism Greedy-HK
on bid b (with the corresponding ordered set Ab, the
last item of each type lastb[tk] and marginal tangent
tgk(Mb)).

Claim C.1. Greedy-HK is monotone (and therefore
truthful).

Proof. We will show that any losing item cannot bid
more and become a winner. Assume otherwise that item
j loses with bid cj but wins with bid bj > cj , given that
all others bid ci, i 6= j.

Note that when j changes his bid, it will only affect
the convex hull of items in t−j ∪ {0}. The following
observations can be verified easily (see Fig. 2):

1. Values v(S) of the set of winners and v(last[tk]) for
each type tk, taken dynamically in the process of
the mechanism, keep increasing.

2. Value tgj decreases when j increases its bid (since
point (bj , vj) is on the right hand side of point
(cj , vj)).

3. Ordered set Ab\t−j is the same as ordered set Ac\t−j

By considering the convex hull for t−j , one can easily
see that if j was not, at any moment, getting into the
winning set S inMc it also will never get in the winning
set in Mb.

Let us explain why when j increases its bid that
it cannot help to remain in the winning set if, for the
current cost cj , it has been dropped off.

Note that in the new ordered set Ab, there can
be new items of the same type as j (e.g. lastc[j] can
be different from lastb[j]), but nevertheless tgj(Mb) ≤
tgj(Mc). Let j′ ∈ t−j be the item that substitutes j in
Mc, then tgj′(Mc) ≤ tgj′(Mb) (note that j′ necessarily
appears in Ab). Let k be an item at which Mb has
stopped, i.e., the first item that we have not taken in
the winning set. Assume k stands in Ab not further
than j′. Consider two cases.

1. Let tk 6= tj . Then

• tgk(Mc) = tgk(Mb)

• v(Sj′(Mc)) ≥ v(Sk(Mc)), as j′ stands later
than k in Ac

• v(Sk(Mc)) = v(Sk(Mb)), since in both
Sk(Mb) and Sk(Mc), we have taken j for type
tj , and we also have taken the same items for
all other types.

2. tk = tj . Then

• tgj′(Mc) ≤ tgj′(Mb) ≤ tgk(Mb)

• v(Sj′(Mc)) ≥ v(Sk(Mb)). The last equality
holds true, because for each type the value of
the item in Sj′(Mc) is greater than or equal
to the than value of the corresponding item in
Sk(Mb).

In both cases we can write

tgk(Mb) ≥ tgj′(Mb) ≥ tgj′(Mc)

≥ v(Sj′(Mc))
B

≥ v(Sk(Mb))
B

Thus we have to take k in Mb to the winning set.
Hence we arrive at a contradiction. Hence we have taken
j′ to the winning set in Mb and therefore exclude j. �

Unfortunately, in contrast to the knapsack case this
scheme does not possess the following property: Any
i ∈ S cannot control the output set given that i is
guaranteed to be a winner.

Claim C.2. Let S be the winning set of Greedy-HK
on cost vector c. Then no item j ∈ S can remain a
winner with bid bj satisfying

bj > (v(j)− v(lastc[tj ])) ·
B

V (S)
+ c(lastc[tj ])
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Proof. Assume to the contrary that there exists such j
and bid bj . We can write

tgj(Mb) =
v(j)− v(lastb[tj ])
bj − c(lastb[tj ])

≤ v(j)− v(lastc[tj ])
bj − c(lastc[tj ])

<
v(S)
B

Consider the ordered set Ac and let k be the last
item we have taken in the winning set in Mc. Now
consider any item i ∈ [1, k] where tj 6= ti. We
have v(S)

B ≤ tgk(Mc) ≤ tgi(Mc) = tgi(Mb). By
the assumption that j is in the winning set in Mb

and tgj(Mb) <
v(S)
B ≤ tgi(Mb), we get that Sj(Mb)

contains an item i′ with ti = ti′ and v(i′) ≥ v(i). Since
j is in S and in Sj(Mb) we get v(Sj(Mb)) ≥ v(S).
Hence

v(S)
B

> tgj(Mb) ≥
v(Sj(Mb))

B
≥ v(S)

B

which gives a contradiction. �

Claim C.3. Greedy scheme Greedy-HK is budget fea-
sible.

Proof. Let S be a winning set forM. By Claim C.2, we
have an upper bound on the payment pj to each item
j ∈ S, i.e.,

pj ≤ (v(j)− v(lastc[tj ])) ·
B

V (S)
+ c(lastc[tj ])

Let 0 = i0, i1, . . . , ir, ir+1 = j be the items of type
tj that have appeared in the winning set. We have
tgi` ≥

v(S)
B for each ` = 1, . . . , r. Hence

c(i`)− c(i`−1) ≤ (v(i`)− v(i`−1))
B

v(S)

Now if we sum up the above inequalities on c(il)−c(il−1)
for all ` = 1, . . . , r and plug it in the bound on pj , we
get

pj ≤
B

v(S)

r+1∑
`=1

v(i`)− v(i`−1) = v(j)
B

v(S)

Therefore,
∑
j∈S pj ≤ B, which concludes the proof. �

C.3 Mechanisms. Given the greedy strategy de-
scribed above, our mechanism for heterogeneous knap-
sack is as follows.

Deterministic-HK

1. Let A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A vi

2. If (1 +
√

2) · vi∗ ≥ Fraction-HK(A \ {i∗}),
return i∗

3. Otherwise, return S = Greedy-HK

Theorem C.2. Deterministic-HK is a 2 +
√

2 ap-
proximation deterministic budget feasible truthful mech-
anism for heterogeneous knapsack.

Proof. The proof consists of each property stated in the
claim.

• Truthfulness. The same proof as for knapsack also
works here.

• Individual rationality and budget feasibility. If i∗

wins in Step 2, his payment is the threshold bid
B. Otherwise, payment to each item has an upper
bound from the payment rule in Greedy-HK and
thus according to the claim C.3 final total payment
will be below given budget B.

• Approximation. Return back to the algorithm for
optimal fractional heterogeneous knapsack. Con-
sider the stage where we add item k to a set
Aj , let us define ṽ(k) = v(k) − v(last[tk]) and
c̃(k) = c(k) − c(last[tk]) to be modified value and
cost of item k. Let us consider the fractional knap-
sack ˜FK problem for those modified costs and val-
ues for all items in A. It turns out that for any
budget this new problem ˜FK has the same answer
as initial heterogeneous knapsack HK. Note that
our greedy scheme Greedy-KS for modified costs
and values and our greedy scheme Greedy-HK for
original heterogeneous knapsack also give the same
answer. Thus applying the part approximation of
claim B.1 to the modified problem we obtain the
desired bound.

�

We can also have the following randomized mech-
anism with an approximation ratio of 3 (its proof is
similar to Theorem B.2).

Random-HK

1. Let A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A vi

2. With probability 1
3
, return i∗

3. With probability 2
3
, return S = Greedy-HK

Theorem C.3. Random-HK is a 3 approximation
universal truthful budget feasible mechanism for hetero-
geneous knapsack.
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