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Abstract

Improving algorithms via predictions is a very ac-
tive research topic in recent years. This paper ini-
tiates the systematic study of mechanism design in
this model. In a number of well-studied mecha-
nism design settings, we make use of imperfect pre-
dictions to design mechanisms that perform much
better than traditional mechanisms if the predic-
tions are accurate (consistency), while always re-
taining worst-case guarantees even with very im-
precise predictions (robustness). Furthermore, we
refer to the largest prediction error sufficient to
give a good performance as the error tolerance of
a mechanism, and observe that an intrinsic tradeoff
among consistency, robustness and error tolerance
is common for mechanism design with predictions.

1

A recently popular trend in algorithmic design is augment-
ing (online) algorithms with imperfect predictions. This
line of work suggests that there exists an opportunity to by-
pass the worst-case lower bounds of online problems, which
are caused by the uncertainty of the future. In this set-
ting, the algorithm is given access to error-prone predic-
tions, and its performance is bounded in terms of the qual-
ity of the predictions. The algorithm should perform bet-
ter than the worst-case bound with accurate predictions, and
never perform much worse than the best pure online algo-
rithm even if the prediction error is large. Many classic on-
line problems have been considered in the context, such as ski
rental [Purohit er al., 2018; Gollapudi and Panigrahi, 2019;
Anand er al., 2020], caching [Lykouris and Vassilvitskii,
2018; Rohatgi, 20201, and scheduling [Purohit et al., 2018;
Lattanzi et al., 2020; Im et al., 2021; Li and Xian, 2021].
Mechanism design and online algorithm design share some
similarities. Both of them need to deal with missing informa-
tion. Due to the uncertainty about the future or the agents’ pri-
vate information, algorithms (mechanisms) have to be overly
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cautious and thereby worst-case bounds arise. Thus, it is in-
teresting to investigate if predictions can help with mecha-
nism design. This paper proposes a study of mechanism de-
sign with predictions. For generality and simplicity, we di-
rectly use agents’ private information as predictions. This
is justifiable in many applications. For example, in repeated
auctions, we may use historical bidding records as the predic-
tions. We note that there are several related works [Medina
and Vassilvitskii, 2017; Antoniadis et al., 2020]. In [Medina
and Vassilvitskii, 20171, repeated posted price auctions were
considered. In [Antoniadis ef al., 2020], the authors mainly
focused on developing an online bipartite matching algorithm
with predictions and noticed that the algorithm can be con-
verted to a truthful mechanism. In this paper, we consider
mechanism design with predictions more systematically and
investigate a number of different mechanism design settings.

1.1 Challenge

We follow the terminology in [Purohit er al., 2018] which
is now standard: say a mechanism’s consistency and robust-
ness are its approximation ratios for accurate predictions and
for arbitrarily inaccurate predictions respectively. Due to the
truthfulness requirement in mechanism design, it is subtle to
use predictions to get a good consistency and robustness.

A mechanism consists of two algorithms: the allocation
algorithm and the payment algorithm. Due to truthfulness,
the allocation algorithm needs to satisfy a certain monotone
property, which is a global property of the algorithm. It is
usually infeasible to change the allocation for certain inputs
based on the predictions without changing the allocation for
other inputs. For example, a widely-used approach to ensure
robustness in online algorithm design is switching to pure on-
line algorithms when the predictions are found to be unreli-
able. However, in mechanism design, switching to traditional
mechanisms when the prediction error is large may hurt truth-
fulness. The agent who benefits more from the traditional
mechanism may misreport the private information such that
the prediction error looks large.

Thus, we need to design the allocation algorithm with pre-
dictions as a whole mapping to satisfy the monotone property.
This gives a big challenge to maintain a good consistency and
robustness. In other words, it is much less flexible to design
a truthful mechanism than an (online) algorithm.
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1.2 Our Contributions

We study four very different and well-studied mechanism de-
sign problems and observe that predictions are indeed helpful.

Revenue-Maximizing Single-Item Auction

Maximizing the revenue is one of the most fundamental prob-
lem in auction design. There is a rich literature (e.g. [Myer-
son, 1981; Goldberg et al., 2001; Azar et al., 2013]). We con-
sider the revenue-maximizing single-item auction and com-
pare the revenue to the highest bid, the most ambitious bench-
mark. It is well-known that there is no good mechanism in
worst-case mechanism design with respect to this goal. If we
assume that all bids belong to [1, k], no deterministic truthful
mechanism has an approximation ratio better than A ( [Gold-
berg et al., 2001]).

With perfect predictions, it is trivial to achieve 1-
approximation since we can simply run anonymous pricing
scheme and set the price as the highest predicted value. How-
ever, this mechanism is very fragile. The approximation ratio
drops to infinity even if there is only a tiny error in the pre-
dictions. This is of course highly undesirable. To address
the issue, we propose a notion of error tolerance to measure
how much prediction error the mechanism can tolerate to get
a reasonable good approximation. Let > 1 be the relative
prediction error, where 17 = 1 means that there is no error. We
give a deterministic truthful mechanism with y-consistent and
h-robust, where the robustness ratio matches the worst-case
bound of h in the traditional setting and the consistency ratio
v > 11is a parameter we can choose. The approximation ra-
tio smoothly increases as a function of yn when < +, and
then has a big drop after 7 > . Therefore, there is a tradeoff
between the consistency and the error tolerance. Moreover,
we prove that such a tradeoff is necessary and in some sense
optimal for all deterministic truthful mechanisms. Our mech-
anism is simple and practical. It is the second price auction
with individual reserve prices, where these reserves are set
based on the predictions.

Frugal Path Auction

Path auction is a reverse auction, where the auctioneer needs
to buy a path and pays the edges in the path. The goal here is
to minimize the total payment and the benchmark is the sec-
ond cheapest path. This is a classic problem in frugal mecha-
nism design. The problem was coined by [Archer and Tardos,
2002]. They showed that the VCG mechanism obtains an ap-
proximation ratio of ©(n), where n is the number of agents,
and the ratio is the best possible [Elkind er al., 2004]. We
obtain a deterministic truthful mechanism with 2--consistent
and (n?/~)-robust. In terms of error tolerance, the approxi-
mation ratio smoothly increases as a function of (1 4 ) as
long as n < . Here we observe a three way tradeoff among
consistency, robustness and error tolerance. The mechanism
is the generalized VCG mechanism (a.k.a affine maximizer),
where the weights for different agents are set based on the
predictions.

Besides the VCG mechanism, [Karlin er al., 2005] pro-
posed V' -mechanism for frugal path auction. The approxima-
tion ratio of V' -mechanism is still ©(n), but it can outperform
the VCG mechanism in some graphs. Later, this technique
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was generalized to more problems in frugal mechanism de-
sign [Chen er al., 2010]. We can also apply our technique to
v -mechanism to get a similar improvement when predictions
are given.

Truthful Job Scheduling

Truthful mechanism for scheduling unrelated machines is
the center problem of the very first algorithmic game the-
ory paper [Nisan and Ronen, 2001], whose goal is to min-
imize the makespan. This problem is very different from
the previous two settings in two aspects: it is a multidimen-
sional mechanism design problem and the objective is not
related to the payment. In [Nisan and Ronen, 2001], the
authors showed that the VCG mechanism gives an approx-
imation ratio of m, where m is the number of machines,
and proved a lower bound of 2 for any deterministic truth-
ful mechanism. They conjectured that no deterministic truth-
ful mechanism has an approximation ratio better than m.
Many papers worked on closing the gap [Christodoulou et
al., 2007; Koutsoupias and Vidali, 2007; Ashlagi et al., 2009;
Giannakopoulos et al., 2020; Dobzinski and Shaulker, 2020;
Christodoulou et al., 2020]. The closest result so far proves a
lower bound of 2(y/m) [Christodoulou ez al., 2020].

For this problem, we give a deterministic truthful mecha-
nism with approximation ratio of O(min{yn?, %j ), where
again vy is the consistency parameter we can choose and 7 is
the prediction error. Here, we compute an (approximate) op-
timal allocation based on the predicted information and use
that allocation as a guide for the mechanism.

Two-Facility Game on a Line

Finally, we consider a mechanism without money: two-
facility game on a line. This setting was coined by [Procac-
cia and Tennenholtz, 2009], where the authors gave an upper
bound of n — 2 and a lower bound of 1.5 for deterministic
truthful mechanisms. The lower bound was later improved to
2 [Lu et al., 2009] and (n — 1)/2 [Lu et al., 2010]. Finally,
[Fotakis and Tzamos, 2014] showed a tight lower bound of
n—2.

Since the space of truthful mechanism without money is
more restricted, it is even more difficult to make use of pre-
dictions here. We get a deterministic truthful mechanism
with (1 + n/2)-consistent and (2n — 1)-robust, whose con-
sistency ratio is slightly better than the best known mecha-
nism. Whether there is a mechanism with o(n)-consistent and
a bounded robustness is a very interesting open question.

2 Preliminaries

This section introduces the terminology necessary to under-
stand the paper. An expert can skip it directly. We take the
single-item sealed-bid auction for an example. In the auction,
there is a seller that has a single good and several bidders who
are interested in buying the good. Each bidder ¢ has a pri-
vate value v; representing the maximum willingness-to-pay
for the item. Each bidder ¢ privately tells the auctioneer a bid
b;, while the auctioneer decides who is the winner (i.e. the
allocation rule) and how much he needs to pay (i.e. the pay-
ment rule). Say the bidder who sets b; = v; is a truthtelling
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bidder. If a bidder is the winner, his utility is v; — p;, where
p; is the price he needs to pay. Otherwise, the utility is 0.

Definition 1. (/Roughgarden and Iwama, 2017]) A mecha-
nism is truthful if for any bidder i, setting b; = v; always
maximizes his utility regardless of other bidders’ bids, and
the utility of any truthtelling bidder is non-negative.

Now we state a widely-used theorem proposed by [Myer-
son, 1981].

Definition 2. (Monotonicity) An allocation rule is monotone
if the winner still wins when he increases the bid unilaterally.

Theorem 1. (Myerson’s Lemma [Myerson, 1981]) For a
single-parameter environment, the mechanism is truthful only
if its allocation rule is monotone, while for any monotone
allocation rule, there exists an unique payment rule which
makes the mechanism truthful. Moreover, such a payment
rule can be given by an explicit formula.

For single-item auctions, the unique payment is the win-
ner’s threshold bid.

Definition 3. (Threshold Bid) Given a single-item auction
mechanism and the bid of each bidder, the threshold bid of
a bidder is the minimum bid that he could make and win the
auction when all other bidders fix their bids.

3 Revenue-Maximizing Single-Item Auction

In this section, we consider revenue-maximizing single-item
auction. There is one item and n > 1 bidders. Each bidder ¢
has a private value v} € [1, k] and reports a bid b; € [1, h.
Use a n-dimensional vector X to denote the allocation of the
item, where each entry z; is either 1 or 0 and it equals 1 only
if bidder ¢ wins. Each bidder ¢ has an utility u; = x; - v} —
pi, where p; is the payment. The auctioneer aims to design
a truthful mechanism that maximizes the selling price, and
the benchmark is the highest private value. In mechanism
design with predictions, we are given access to the predictions
of bidders’ private values, denoted by V = {i}icin). The
predictions are erroneous and we define a natural prediction
error 1) 1= max;epu]{ 5 w

Theorem 2. There exists a deterministic truthful mechanism

parameterized by v > 1 with approximation ratio at most
min{ f(n), h} where

m n<ry

f(n) = hn
max{~n?, 2o

From Theorem 2, the claimed mechanism has a robustness
ratio h, which is the best possible in the traditional setting.
The consistency ratio of the mechanism is determined by a
parameter . Notice that the function f(n) is piecewise and
has a “jump” when n = ~y. We refer to the length of the first
piece in f(n) as the error tolerance. Later in this section, we
will prove that this jump point is unavoidable for any deter-
ministic truthful mechanism. In order to communicate our
main ideas more clearly, this section simplifies the algorithm
and the analysis by assuming that the number of bidders is at
least 3. In this paper’s full version, we show that removing
this assumption still gets the claimed approximation ratio.
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Algorithm 1 Single-Item Auction with Predictions

Input: The predicted private values V = {0i}ie[n), the bids
B = {b;}c[n) and a parameter y > 1.
Output: The winner and the payment.
1: Reindex the bidders in the decreasing order of their pre-
dicted values.
2: Assign a bar br (i) to each bidder . Initially, br(:) < 1
Vi € [n].
if Vi e [’FLL’(A}Z > ’[)1/’}/2 then
Update the bar of bidder 1: br(1) < max{d; /v, 1}.
else
Update the bar of bidder 1: br(1) < max{?;/v,1}.
For each bidder ¢ with ¥; > 01/ ~2, update the bar:
br(i) < max{d; /2%, 1}.
end if
9: Define a bidder set S := {i € [n]|b; > br(i)}.
10: return the bidder j € S with the highest bid and the
threshold bid (5).

A A

®

3.1 Mechanism

We start by giving some intuitions. For simplicity of notation,
reindex the bidders in the decreasing order of their predicted
values. So now bidder 1 has the largest predicted value .
Notice that if the predictions are error-free, letting bidder 1
win and charging him 9, gives the optimal solution. Inspired
by this, a natural idea is the following. If the reported bid
b1 is no less than the predicted value v, let bidder 1 win.
Otherwise, ignore bidder 1 and let the remaining bidder with
the highest bid win.

Clearly, this allocation rule is monotone. Then due to The-
orem 1, we can ensure the truthfulness by charging the win-
ner the threshold bid. More precisely, if bidder 1 wins, the
payment is 97, while if bidder ¢ (# 1) wins, the payment is
the second highest remaining bid. The mechanism has a con-
sistency ratio of 1, meaning that it gets the optimal value 01
when n = 1. However, the approximation ratio will increase
to h immediately even if 7 is only slightly larger than 1. Thus,
although the robustness ratio of the mechanism is h which is
the best possible in the traditional setting, we cannot refer to
it as an ideal mechanism due to the tiny error tolerance.

One way to get a mechanism with a larger error tolerance
is setting a lower bar for bidder 1. For example, let bidder 1
win if by is at least 91 /7y, where 7 is a parameter > 1. The
mechanism will have a comparable performance when n < ~,
because bidder 1 will always win and the threshold bid is at
least ©1 /. We build on this idea to give our mechanism.
Moreover, we refine the way we handle other bidders such
that the approximation ratio will not increase to h immedi-
ately once the prediction error becomes larger than . The
mechanism is described in Algorithm 1.

3.2 Analysis

Observing that in Algorithm 1, increasing any bidder’s bid
will only improve the chance that he wins, the allocation rule
is monotone. Hence, we have the following lemma.

Lemma 4. Algorithm 1 is a truthful mechanism.
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Now we focus on the approximation ratio analysis. We first
give a simple proof of the robustness ratio i, and then show
that the approximation ratio is at most f (7).

Lemma 5. Algorithm I has an approximation ratio at most h.

Proof. The upshot is that for any bidder 4, 6(i) > br(i), be-
cause if b; < br(i), bidder ¢ will not be included in S and
lose the auction. Since br (i) > 1 for any bidder 4, the win-
ner’s payment is at least 1. Note that h is the upper bound
of all bids. We have the optimal selling price OPT < h,
implying that the approximation ratio is at most h. O

We distinguish two cases to analyze the other bound:
(1) n < v and (2) n > . The main difference of the two
cases is whether we can ensure that bidder 1 is in S or not.

Lemma 6. The approximation ratio of Algorithm 1 is at
most yn if n < 7.

Proof. In this case, we can claim that bidder 1 is always in
S,ie., by > br(1). If br(1) = 1, by is always at least br(1).
Otherwise, br(1) = 01 /. Since v > ¥1/n and n < 7, we
still have by > br(1).

Suppose that the winner is bidder j and the optimal pay-
ment is the private value v;, of bidder k. If j = 1, the pay-
ment is (1) > br(1). Otherwise, the threshold bid of bidder
j is at least by > br(1). Observing that regardless of which
case, the payment is at least br(1), we can bound the payment
PAY as follows:

A
~

PAY > br(1) > Yk
1

2|2

m

completing the proof. O

Lemma 7. The approximation ratio of Algorithm I is at most
max{y?n?, 44} if n > 7.

Proof Sketch. In this case, we cannot ensure that by > br(1).
Notice that if bidder 1 is still included in S, following the
same analysis in Lemma 6 gives the ratio yn. So we only need
to focus on the case that by < br(1). We further distinguish
two subcases: (1) Vi € [n], &; > ©1/+?% and (2) 3i € [n],
0; < 1/~2. Basically, the two terms in the target approxima-
tion ratio come from these two subcases respectively. For the
first subcase, we observe that the ratio between any two bid-
ders’ predicted values is at least 1/+2. This implies that for
any two bidders, the ratio between their real values is at least
1/(v*n?). Thus, using the second price mechanism should
return a payment at least OPT/(727?). For the second sub-
case, the payment could drop to 1. But here, we can show
that the optimal payment is at most h7/~2, which proves the
claimed ratio. Due to space, the detailed proof is omitted. [

Combining the above lemmas, we can prove Theorem 2.

3.3 Lower Bounds

This subsection gives two lower bounds of the auction prob-
lem. We only state the theorems here and provide the proofs
in the full version of this paper.
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Theorem 3. For any deterministic truthful mechanism with
a consistency ratio vy, the approximation ratio is at least h/n
when 1 > 1.

For any v < h'/®, when 1 is slightly larger than +, our ratio
f(n) is close to h/~y, which matches the lower bound given
by Theorem 3. To show the optimality of the mechanism’s
performance when 77 < -y, we assume that 7 is sampled uni-
formly from [1,~] and prove a lower bound of the expected
approximation ratio.

Theorem 4. For any deterministic truthful mechanism with
a consistency ratio y (< \/E) supposing that the prediction
error 1) is a random variable uniformly distributed on [1,7],
the expected approximation ratio is at least (y+1)~y/2, which
is exactly the expected ratio of Algorithm 1.

4 Frugal Path Auction

In frugal path auction, there is a graph G = ({s,t} UV, E)
with at least two edge-disjoint s-t paths. Each edge e € E'is
owned by an agent and the cost ¢} is a secret known only to
that agent. Denote the number of agents by n. Each agent e
submits a sealed bid b.. Then, the auctioneer selects an s-t
path L as the winner and gives payment p. to each e € L. If
an agent wins, the utility is p. — c}. Otherwise, the utility is
0. The goal is to design a truthful mechanism such that the
total payment ) __ . p. is minimized. In mechanism design
with predictions, the auctioneer is given access to the edge
cost predictions C = {éc}ecE-

For a frugal mechanism, a standard way to measure its
performance is frugal ratio. The formal definition of fru-
gal ratio is a long statement (see [Karlin er al., 2005]). For
simplicity, this section states an equivalent but more acces-
sible definition specific to the path auction problem given
in [Archer and Tardos, 2002]. Say a frugal path mecha-
nism M. For an instance Z, use P(Z) to denote the total
payment of M and S(Z) to denote the cost of the second
cheapest s-t path. The frugal ratio of a mechanism M is de-
fined to be FR = sup; P(Z)/S(Z).

For the brevity of the algorithm’s statement and analysis,
we assume that the graph consists of just some parallel s-t
paths and each edge has a positive cost. Notice that the as-
sumptions do not affect the problem’s hardness. The worst-
case bound is still Q(n) under the assumptions. The mecha-
nism is described in Algorithm 2.

Theorem 5. Algorithm 2 is truthful and has a frugal ratio at

most f(n), where the prediction error 1) := maxeecp{

and C
Y(1+n) n<y
f(n):==q n?
— n>7.
5

Mechanism Intuition. The basic intuition is the same as
the single-item auction problem. That is, we set a bar for the
path with the minimum predicted cost and treat it differently
when the reported cost is below or above the bar. Recollect
that in single-item auction, if b; is below the bar, the mecha-
nism ignores bidder 1 directly. However, things are different
in path auction. Ignoring a path may lead to an unbounded
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Algorithm 2 Frugal Path Auction with Predictions

Algorithm 3 Truthful Job Scheduling with Predictions

Input: A graph G, the predicted edge costs C' = {éc}eeps
the bids B = {b. }cc and a parameter v € [1,n'/3].
Output: The winner and the payments.

1: Say path Lis the path with the minimum predicted cost.
2: For any s-t path L' # L, set its weight w(L') <+ 1.

3t if Ve € L, b, < ¢, then

4 Setw(L) « v/n.

5: else

6:  Setw(L) « n/y.

7: end if

8:

return the path L with the minimum weighted bid and
the threshold bid 6(e) of each edge e € L.

frugal ratio. For example, consider a graph with three edge-
disjoint s-t paths. Their costs are 1,1 and oo respectively. Say
we ignore the first path. Then any truthful mechanism has to
pay oo, but the second cheapest path cost is only 1. Hence,
the frugal path mechanism needs a more careful design after
setting up a bar. When the bid of the predicted cheapest path
is far larger than the predicted cost, instead of ignoring it di-
rectly, we assign a large weight to it so that the path is still
a candidate but less competitive. The proof sketch of The-
orem 5 is stated in the following while the detailed proof is
provided in the full version of this paper.

Proof Sketch of Theorem 5. The truthfulness proof is simple.
We can easily show that the weight function guarantees the
monotonicity, and thus the truthfulness. For the ratio analysis,
we distinguish two cases based on whether 7 is at most y. The
reason is that when 1 < ~, we can ensure that the weight of
Lis always 7/n, and thereby L always wins. Analyzing the
threshold bid of each edge in L is abit subtle, but the intuition
is the following. If edge e € L cannot win when its bid is
larger than ~¢,, its threshold bid is at most ¢, implying that
the total payment of all such edges is at most 7 times the
second cheapest path cost. Otherwise, the threshold bid is
bounded by v/n times the second cheapest path cost because

the weight of L becomes n/~ when b, > 7é. Then, the
total payment of these edges should be at most ~ times the
second cheapest path cost. For the case that n > ~, we show
that regardless of which path wins, the threshold bid of each
winning edge is at most n/~y times the second cheapest path
cost. Thus, the total payment gives a frugal ratio of n? /y. [

Essentially, Algorithm 2 can be viewed as a variant of
the VCG path mechanism which incorporates predictions.
Besides the VCG path mechanism, there is another famous
mechanism for path auction called v -mechanism [Karlin et
al., 2005]. Leveraging the idea of v' -mechanism can improve
the robustness slightly. In some graphs, the robustness ratio
decreases by a factor of y/n. See more details in the full ver-
sion of this paper. In the following, we give a lower bound to
show the optimality of Algorithm 2 when 7 is small.

Theorem 6. For any deterministic truthful mechanism, the
frugal ratio is Q(n?) given any n = O(\/n).
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Input: Machines M, jobs .J, the bid matrix {b;;}(; jyerrx .
the predicted matrix {fij}(i,j)e Mx g and a parameter v €
[1,m].

Output: The allocation matrix X and the payment matrix P.

1: Construct a new processing time matrix 7" as follows.
2: for each job j € J do

3. Define £ = minge s fij.
4:  For each machine ¢ € M,
set#;; < min{t;;, (m/v) -t (mm)}
5: end for ~
6: Compute the optimal allocation X of the scheduling in-
stance 7.
7: for each job j € J do
8:  Use k to denote the machine with Z; = 1.
9: if l?kj > Ekj then
10: Call job j a greedy job.
11: Define | := argmin;cps fij and set up a weight
function: wy; < v/m and w;; < 1 Vi # 1.
12:  else
13: Call job j a non-greedy job.
14: Set up a weight function: wg; < v*/m? and w;; <
1Vi # k.
15:  endif
16:  Let the machine z with the minimum weighted bid win

and pay the threshold bid 6,; for job j. Namely, set
Tyj l,pzj — sz and Tij,Pij < 0Vi 7é zZ.

17: end for

18: return X = {xij}(i,j)EMXJ and P = {pij}(i,j)GMXJ'

When n = v — € for a tiny positive €, the frugal ratio of
Algorithm 2 approaches the lower bound.

5 Truthful Job Scheduling

In this section, we consider the truthful job scheduling on
unrelated machines. In the problem, there are n jobs J and
m machines M. Each machine ¢ is owned by a selfish agent,
and the processing time t7; of each job j on machine i is a
private value known only to the agent. Without loss of gen-
erality, assume that ¢;; > 0. Each job has to be assigned
to exactly one machine. The mechanism will ask each ma-
chine i to report a processing time b;; for each job j, and then
allocate jobs. Once job j is assigned to machine ¢, the mecha-
nism pays the machine (agent) p;;. Use X = {Iz‘j}(i,j)eMxJ
to denote the job allocation matrix, where x;; is 1 if job
j 1is assigned to machine ¢, otherwise 0. The makespan of
an allocation X is the completion time of the last job, i.e.,
MS := max;ep ZjeJ Tij f] The utility of each machine ¢
is defined to be 3 ;(pi; — wi;t;;). The goal is to design a
truthful mechanism which minimizes the makespan. In mech-
anism design with predictions, we are given the predicted pro-

cessing times T = {t”}(z femx.g- The predlctlon is error-

17
f* ’t

This problem is very different from the previous two prob—
lems. First, it is not a single-parameter environment. For

7]

prone and the prediction error 77 := max(; ;)
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each machine ¢, the private value is a n-dimensional vector
< tf,...,t5, >. Second, the objective function is not directly
related to the payment. The mechanism gives the winners
money but the goal is to minimize the makespan. Thus, the
payment rule in truthful scheduling is only for the purpose of
ensuring the truthfulness. We describe the mechanism in Al-

gorithm 3 and claim the following theorem.

Theorem 7. Algorithm 3 is truthful and has an approxima-
tion ratio O(min{yn?, 2“—;})

Mechanism Intuition. We deal with each job indepen-
dently. Thus, each job can be viewed as a single-item auction,
and we can apply our technique without hurting the truthful-
ness. Similar with the previous two mechanisms, we retain
the same job allocation when 7 is small, in order to build
the consistency and the error tolerance. We first compute the
optimal assignment for the predicted instance, and set up a
weight function of machines such that selecting the machine
with the minimum weighted bid for each job gets the optimal
assignment. Then we decrease the weights of some machines
by a factor. This ensures that when 7 is small, these ma-
chines still obtain the minimum weighted bids, and thereby
the job assignment remains unchanged. For the robustness
guarantee, we observe that if the ratio between any two ma-
chines’ weights is at most ¢, the approximation ratio of the
mechanism must be bounded by ¢ - m. Thus, we round the
predicted instance such that after rounding, the ratio between
any two machines’ weights is bounded. Notice that using the
rounded weights directly may hurt the consistency because
the processing time of a job could be different in the predicted
instance and the rounded instance. To maintain a good con-
sistency and robustness, we only use the rounded weights to
guide the jobs that share the same processing time in both of
the two instances. For all other jobs, we set up their weights
such that they can be assigned greedily when n = 1.

Proof Sketch of Theorem 7. The proofs of the truthfulness
and the robustness are simple. For each job, the allocation
rule is monotone and the ratio between any two machines’
weights is bounded. The tricky part is to show the O(yn?)
bound. We first show that the consistency ratio is O(~). Sup-
pose that 7 = 1. Partition all jobs into two sets: greedy jobs
and non-greedy jobs. For non-greedy jobs, we claim that their
assignment is the same as the optimal assignment of 7', and
thus, their contribution to the makespan is at most the optimal
makespan of T'. For greedy jobs, we show that although they
are assigned differently, shifting each one to the machine with
the minimum processing time will not increase the makespan
too much. Summing over the contributions of the two job
sets gives the O(+y) consistency ratio. For erroneous predic-
tions, we distinguish two cases based on whether 7 is at most
\/m/~. For both of the two cases, we can obtain the O(yn?)
approximation ratio. O

6 Two-Facility Game on a Line

In this section, we consider the problem of locating two facil-
ities on a real line to serve a set of selfish agents. In the prob-
lem, there are n agents and each agent ¢ has a private location
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Algorithm 4 Two-Facility Game with Predictions

Input: The reported location profile X = {z1,...,2,} and
the predicted locations V = {1, ..., i, }.
Output: The two facility locations.

1: Compute the optimal facility locations fl, I for V. We
assume w.l.o.g. that [, is the facility which attracts more
agents and there exists an agent i with [ = ;.

Setly < x;.
Define d 4 :

w

max (z; —z;) and dp := max (z; — x;).
ifdA < dB then
Setly < 11 + max{2dA, dB}
else
Setlo « Il — max{da,2dg}.
end if
return /; and 5.

R A

v¥. The mechanism asks each agent i € [n] to report the loca-
tion z; € R, and then outputs two facility locations /1, l5 € R.
Each agent 7 wants to minimize the connection cost ¢;, which
is the distance between v and the nearest facility. The goal
is to design a truthful mechanism which minimizes the total
connection cost. In mechanism design with predictions, we
are given the predicted location ¥; of each agent i € [n]. We
show that in an environment without money, we can still use
predictions to improve the approximation ratio slightly. The
mechanism is described in Algorithm 4.

Theorem 8. Algorithm 4 is a truthful mechanism with (1 +
n/2)-consistent and (2n — 1)-robust.

Mechanism Intuition. The mechanism builds on the line
mechanism [Lu et al., 2010]. We notice that in the line mech-
anism, there exists an arbitrarily selected dictator. Thus, a
natural idea is leveraging predictions to select the dictator.
An advantage of this idea is that the robustness can always be
guaranteed because selecting any agent to be the dictator ob-
tains an O(n) approximation ratio. Then we check the struc-
ture of optimal solutions, and find that for any instance, there
always exists an agent such that the line mechanism’s perfor-
mance can be improved if letting this agent be the dictator.
Thus, setting the dictator to be such an agent in the predicted
instance makes the mechanism consistent.

Proof Sketch of Theorem 8. Since Algorithm 4 is essentially
the line mechanism, the truthfulness and the robustness are
proved directly. The remaining part is the consistency analy-
sis. For the case that = 1, we partition agents into two sets
based on the facilities that serve them in the optimal solution.
Say S is the agents served by facility I,. For any agent in
S, the current connection cost is at most the connection cost
in the optimal solution because facility /; opens. According
to the definition of Zl, at least half of agents are in .S;. For the
remaining agents, we show that each one’s connection cost is
at most OPT plus the connection cost in the optimal solution.
Thus, the total connection cost is at most (1+n/2)OPT. O
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