FPTAS for #BIS with Degree Bounds on One Side

. .k
Jingcheng Liu
University of California, Berkeley

liuexp@berkeley.edu

ABSTRACT

Counting the number of independent sets for a bipartite
graph (#BIS) plays a crucial role in the study of approxi-
mate counting. It has been conjectured that there is no fully
polynomial-time (randomized) approximation scheme (FP-
TAS/FPRAS) for #BIS, and it was proved that the problem
for instances with a maximum degree of 6 is already as hard
as the general problem. In this paper, we obtain a surpris-
ing tractability result for a family of #BIS instances. We
design a very simple deterministic fully polynomial-time ap-
proximation scheme (FPTAS) for #BIS when the maximum
degree for one side is no larger than 5. There is no restric-
tion for the degrees on the other side, which do not even
have to be bounded by a constant. Previously, FPTAS was
only known for instances with a maximum degree of 5 for
both sides.
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1. INTRODUCTION

Counting the number of independent sets in a bipartite
graph (#BIS) is arguably the most important open ques-
tion in the study of approximation algorithms for counting
problems, which plays a similar role as the unique game for
optimization problems, or the PPAD class for fixed points
and Nash equilibria. We do not know if it admits a fully
polynomial-time (randomized) approximation scheme (FP-
TAS/FPRAS), and we do not know if it is as hard as count-
ing the satisfying assignments for a satisfaction problem
(#SAT) either. It is conjectured to be of intermediate com-
plexity [6]. Similar to unique game, the approximability
of #BIS is important not only because it is an interesting
problem on its own, but mainly due to the fact that many
other counting problems are proved to have the same com-
plexity as #BIS. It is a complete problem for a family of
logically defined problems called #RHII; as a subfamily of
#P [6]. With the help of this intermediate class, a number of
complete classifications for the approximability for various
families of problems have been proved, such as the Boolean
#CSP problems |7, |10 3].

Without restricting input graphs to be bipartite, the ap-
proximability for counting the number of independent sets
(#I1S) is well understood. For general graphs, approximately
counting the number of independent sets is as hard as find-
ing the maximum independent set, which is NP-hard. This
reduction was one of the very first proofs for inapproxima-
bility for counting problems. The hard instances used in
the reduction have very large degrees, and as a result later
research has been mainly focused on sparse graphs, such as
graphs with a maximum degree bound. An FPRAS based
on the Markov chain Monte Carlo (MCMC) method was
obtained when the maximum degree is 3 in [8] and then 4
in [23]. Later, a deterministic FPTAS based on the correla-
tion decay technique was obtained for graphs with a max-
imum degree of 5 by Weitz [30]. On the inapproximability
side, it was proved that the problem is NP-hard as long as
we allow the maximum degree to be 25 [9]. The hardness
bound was eventually reduced to 6 and thus closed the gap
in [29].

However, the approximability for #BIS is much more chal-
lenging. We do not know any NP-hardness result even if we
do not have a degree bound. The previous proof for gen-
eral graphs does not work because finding a maximum in-
dependent set for bipartite graph is equivalent to finding a
maximum matching (Konig’s theorem), which is polynomial
time solvable rather than being NP-hard. The main reason
to make #BIS extremely important in the study of approx-



imate counting is that a large number of other problems
are proved to have the same complexity as #BIS (#BIS-
equivalent) or at least as hard as #BIS (#BIS-hard) un-
der approximation-preserving reduction (AP-reduction) [6].
Examples include combinatorial counting problems such as
#Downsets (counting the number of downsets of a partial
order system), #Bipartite-g-COL, #Bipartite-MAX-IS (all
in [6]) and #Stable-Matching [5], logical problems such as
#1PINSAT and #IM [6], problems from statistical physics
such as computing the partition problems for ferromagnetic
Ising model with mixed external fields [13] and Potts sys-
tem [14], and many other counting problems. One recent
interesting result on #BIS itself indicates that #BIS with
maximum degree 6 is already as hard as general #BIS [4].
This restricted version of #BIS is more useful in some re-
ductions and the new result has been used to prove #BIS-
hardness for other problems such as ferromagnetic two-spin
systems with a uniform external field [21]. Moreover, it was
shown that if #BIS does not admit an FPRAS, then there
is an infinite approximation hierarchy even within #BIS [1].

The main reason to make #BIS flexible in these reductions
is indeed due to its bipartite structure, on which the vertices
from two sides can encode (or be encoded by) two different
objects for other problems. For example, a hypergraph can
be represented as a bipartite graph (known as its incidence
graph), with the left side being the vertex set and the right
side being the edge set. In this new bipartite graph, the
degrees on the left side are the same as the degrees in the
hypergraph, while the degrees of the right side are sizes of
hyperedges in the hypergraph. This nature makes it suitable
to study #BIS with different degree constraints on two sides.
For example, #Semi-regular-BIS studied in [14] has one side
regularity requirement.

On the algorithmic side, it was shown in [9, [24] that any
local MCMC algorithm that uses subsets of vertices as state
space, mixes slowly even on a bipartite graph with a max-
imum degree of 6. More recently, an interesting attempted
Markov chain by Ge and Stefankovic [11], which uses sub-
sets of edges as state space and differs from previous MCMC
methods, was also shown to mix slowly in [12]. Prior to our
work, the best known FPRAS or FPTAS for #BIS was the
same as that for #IS for graphs with a maximum degree of
5. There was no algorithmic evidence to distinguish #BIS
from #IS.

Our Results

Our main result is an FPTAS for #BIS when the maximum
degree for one side is no larger than 5. There is no restriction
for the degrees on the other side, which do not even have
to be bounded by a constant. Assuming that there is no
FPTAS or FPRAS for general #BIS, our result is of the best
possible in the sense that, if we allow degrees of 6 on both
sides, the problem is already #BIS-hard. Our FPTAS can
also be viewed as the first algorithmic evidence to distinguish
#BIS from #IS.

Our algorithm is almost identical to Weitz’s algorithm for
general #IS with a maximum degree of 5, and the main tech-
nique is also correlation decay. We elaborate a bit on the
ideas. Due to a standard argument, computing the number
of independent sets is reduced to computing the marginal
probability of a vertex to be chosen, if one samples an in-
dependent set uniformly at random from all possible inde-
pendent sets of the input graph. Then, the main idea is
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to estimate these marginal probabilities directly rather than
through sampling, which is made possible by the remarkable
self-avoiding walk (SAW) tree introduced by Weitz in [30].
For efficiency of computation, the marginal distribution of a
vertex is estimated using only a local neighborhood around
a vertex. To justify the precision of the estimation, we show
that far-away vertices have little influence on the marginal
distribution. This is done by analyzing the decay rate of
correlation between two vertices in terms of their distance.
In [30], it is proved that when the degree of each vertex is at
most 5, this decay rate is exponentially small in the depth of
the SAW tree. However, the same analysis does not apply to
our case as the degrees of one side can be arbitrarily large.
To overcome this, our main idea is to combine two recursion
steps of the SAW for #BIS into one, and work with this
two-layer recursion instead. As it turns out, it has the same
effect as treating one side of vertices as variables, while the
other side of vertices as constraints. Then we ensure that
the degrees in the first layer, which are the variables’ de-
gree, are always no more than 5. The key is to formalize
an observation that the larger the second layer degree (the
constraint’s degree), the faster the correlation decays. Such
analysis is only possible for #BIS rather than general #IS.
Such a two-layer type recursion is similar to that for mono-
tone CNF and hypergraph matching in [20]. As we have seen
there, the analysis for these two-layer recursions is usually
much more challenging and complicated. One additional
complication here is due to the fact that the degrees for the
other side are not even bounded by a constant. For these
cases, we need to prove an even stronger notion of corre-
lation decay called computationally efficient correlation de-
cay as in |17} |19, 20], which says that the error decays by
a super-constant factor if we go through a vertex with a
super-constant degree. In order to prove the correlation de-
cay property, we use a potential function to amortize the
decay rate as in many previous works [25, |17, (18 26} 22]. A
good potential function is the key to these proofs. In this
paper, the potential function is carefully constructed to not
only make the decay rate less than one but also make the
proof simpler. Effectively, the potential function we use in
this paper makes the amortized decay rate of the two-layer
recursion act as if it is a single layer. This dramatically
simplifies the proof. We believe this simple idea can find
applications in the analysis of other two-layer recursions.

Related work

The correlation decay based FPTAS for counting indepen-
dent sets was extended to anti-ferromagnetic two-spin sys-
tems |17} |26l |18]. From a statistical physics point of view,
the independent set problem is a special case of the hard-
core model, where one introduces an activity parameter and
counts weighted independent sets. To extend our result to
weighted independent sets and anti-ferromagnetic two-spin
systems in general is an interesting open question.

There are some other works that study counting problems
for richer families of graphs other than a single maximum
degree constraint. A beautiful direction is to replace the
maximum degree constraint by the connective constant [28|
27), which can be viewed as a version of average degree.
However, if one would like to apply this average degree type
argument to the #BIS instances in our setting, the connec-
tive constant is unbounded since the degree of one side is
unbounded. Our result also indicates that in the case of



bipartite graphs, the average degree may not be powerful
enough to capture the complexity of the problem.

Such phenomena where larger degrees (the degrees of con-
straints) only make the problem easier, also come up in
hypergraph independent sets. In particular, let d be the
maximum degree, and m be the minimum edge size (which
plays the role of constraint degree). As is shown in [2], if
m > d+ 2 > 5, the problem of counting independent sets
on such hypergraphs admits FPRAS. In contrast, if we only
have maximum degree parameter d, then it only admits FP-
TAS when d < 5 [20].

Bipartiteness changing the complexity of a problem is
also an interesting phenomenon in the study of approximate
counting. Two other famous examples are graph colorings
and perfect matchings. Counting the number of colorings
for bipartite graphs is an important open question, which
is known to be #BIS-hard, but not known to be #BIS-
equivalent or not. There is an FPRAS for counting perfect
matchings in a bipartite graph [15], while for general graphs
it is a long-standing open question.

2. PRELIMINARY

For an undirected graph G = (V, E), a subset of vertices
I C V is an independent set of G if there is no edge be-
tween any two vertices within I. We denote I(G) as the set
of independent sets of graph G, and Z(G) 2 |I(G)]. G is
bipartite if there exists U C V such that both U € I(G) and
UC € I(G@). Hence it can be written as G = (U W U", E).

Given a graph G = (V, E), a vertex u € V, a set of vertices
U C V, we define the following:

e Removing a vertex u and its incident edges:

G—u=(V\{u},{e € E|eisnot incident with u}).

e Removing a set of vertices U and all incident edges:
G-U=(V\U,
{e € E | e is not incident with any u € U}).

We write Ng(u) for an open neighborhood of a vertex u
(which does not contain u), and Ng[u] for a closed neigh-
borhood of u (which includes u itself). Note that in the case
of a bipartite graph G = (UWV, E), for every vertex u € U,
we have Ng(u) C V.

In general, we use u = 0 to refer the vertex w is not
chosen in an independent set, and u = 1 for being chosen.
With an independent set sampled uniformly at random, the
probability that the vertex u is chosen is denoted by Pg(u =
1). Similarly, Pe(u = 0) is for the probability that the vertex
u is not chosen.

As an easy observation, the number of independent sets
without choosing u is Z(G — u), with those choosing u being

Z (G — N¢lu]). Thus Pg(u = 0) = Z(ZC("C_;;‘), and similarly
Po(u=1) = Z(G—Nglu])

Z(G)
3. THE ALGORITHM

The main result of this paper is the following algorithm.

THEOREM 1. There is an FPTAS for counting the num-
ber of independent sets of a bipartite graph G = (U WV, E)
with min {Ay, Av} < 5, where Ay and Ay are the mazi-
mum degree over vertex set U and V' respectively.
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Without loss of generality, we assume Ay < Ay. Thus,
we have Ay < 5. We denote n = |U|,m = |V|.

3.1 Counting from Likelihood Ratios

We shall first reduce the problem of counting to computing
likelihood ratios. This is a standard reduction, and was
introduced as the self-reducibility structure in |16].

For vertices u € U, let R(G,u) £ igﬁzzég = Z((Z;(_G]\:i[)w
Although we can similarly define R(G,v) for v € V, our
ultimate algorithm would only involve vertices u € U as
variables.

Let w1, u2,...,u, be an arbitrary enumeration of vertices
in U, and G; = G — {u1,...,u;—1}. In particular, G1 = G,
and G, — up = G — U. Also recall that the vertex set of
G — U is just V, which is an independent set of G by itself,

Z(G) =Z(G —w1) + Z(G — Ne[u])
=Z(G1—u1) - (1+ R(G1,u1))
=(Z (G2 —u2) + Z (G2 — Ng, [u2])) - (1 + R(G1,u1))

=Z(G2 —u2) - (1 + R(G2,u2)) - (1 + R(G1,u1))

—un H 1+R Ghul))
=1

=Z(G-U)- 1+ R(Gs,us))

=i

=1

=2™m ﬁ (1 + R(G“ ul))

PROPOSITION 1. Provided an algorithm R(G,u,e) for es-
timating R(G,w) within an additive error e, which runs in

time poly(n,1/e), and outputs R such that ‘]A% — R(G, u)‘ <
€. There is an FPTAS for estimating Z(G) based on R(G, u,€).

Proor. Let G; = G — {ul,.. Uj— 1} Given 0 < € <

1, let R; & R(Gi,ui,i) and R; 2 R(Gi,u;). Consider
the algorithm that returns Z(G) = e (1 + Rz) as an
approximation for Z(G) = 2" []/_ ( + R;). We have
’Rz Rz R B
< s — R < —
1+R; — R R < 2n
€ 14+ R; €
1—-— )< < (1
= 2n)‘1—|—R1_( +3,)
Since % =11, 1127 we have,
e\" "1+ R, / G) e\
1——) < = ——<(1+ —
( 2n) *EI—FRZ Z(G)*( +2n>
Z(Q)
1l—-e<—+~%<1 .
- e < Z(G) <l+4e¢
This concludes the proof. []

Therefore, the remaining task is to design an algorithm
for R(G,u,¢).



3.2 Tree Recursion from Self-Reducibility

Before implementing the algorithm required by Proposi-
tion [T} we will show a recursive relation for R(G, u) using the
self-reducibility structure again, which gives an alternative
derivation of Weitz’s self-avoiding walk tree approach [30].

LeEMMA 1. Let d £ degg(u), and NG( ) be enumemted
as {v;}L_,. Denote Gi 2 (G —u) — {v;i}iZ w2 degG (vi).
Let Ng,(vi) be enumerated as {ui;};2,, and Gi; 2 (G —
v;) — {ulk}fc;i Then

w=]] <1 + H (1+ R(G’hjvu’iaj))1> '

i=1 =1

We refer to d as the first-layer degree, and w; as the
second-layer degrees. If d = 0 or w; = 0 for some i, we
follow the convention that an empty product is 1.

The same recursion can be obtained by first constructing
the self-avoiding walk tree for G from u and then combin-
ing two steps of the tree recursion at a time. Instead of
explicitly constructing the whole SAW tree, we present an
alternative derivation based only on a nontrivial partition
scheme promised by the self-reducibility.

PROOF. Recall that d £ deg,(u), and Ng(u) is enumer-
ated as {’Ui}?:l, and G; — Vi = Gi+1,

Potum1) _ 2D ¢
R(G,u) ===~/
o =fee =g = s =117

Next we use the self-reducibility structure of the problem,
which gives the following partition scheme for free: Z(G;)
Z(Gi —v;i) + Z(G; — Ng,[vi]), thus

Z(Gl — vi) _ Z(Gl — 7_)7;)
Z(Gz) N Z(GZ —Ui)—l—Z(Gi _NGi[UiD
1
- Z(G;—Ng, [vi])
L+ Z(Gi_GUi)
. 1
1 + R(Gi7’l}i) ’

Similarly one could use self-reducibility again and show
that R(Gi,vi) = [[J2, (1+ R(Gij,ui;))”". Substituting
these R(Gj,v;) into the above recursion, we conclude the

proof. []
It is worth noting that Pg, (v; =0) = % As an
intuition, if Pg, (v = 0) = 1, namely Z(G; —v;) = Z(Gs),

then one could safely ignore the vertex v; and still get a good
approximation. We will see a more quantitative version of
this fact, and in particular how it relates to the one-sided
maximum degree in Clalm A

Since 0 < i (H—R( )
lowing bound for R(G u) from the recursion, which will be

useful in the analysis:

< 1, we can get the fol-

LEMMA 2.

27 e < R(G,u) < 1
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We can further expand R(G;,j, us,;)s by the above recur-
sion and get a tree recursion for R(G,u). Since Ay < 5,
except for the root of the recursion, we always have d =
degg, (uij) < Ay —1 < 4 for the first-layer degree. In

these cases, the above bounds are 1z < R(G,u) < 1.

3.3 Computation Tree

Now we are ready to implement the algorithm as required
by Proposition We recursively define R(G,u, L) as fol-
lows. For base case L = 0, R(G,u,L) = 27 degc(v) - For
L >0, let Lj = max (0, L — [log,s(w; + 1)]), then

= ﬁ <1 + ﬁ (1+R (Gi,j,ui,j,L;))l)_l ,

i=1 j=1

The recursion depth L is used to control the accuracy
of the estimation, and plays the same role as ¢ referred in
Proposition [} After one step of recursion, L is subtracted
by [log,s(wi+1)] rather than 1, which is known as M-based
depth introduced in [17], with M = 45 in our case.

As an intuition, the recursion depth L can be thought
of as a computational budget, in which we replace every
node with a branching degree greater than 45 with a 45-
ary branching subtree. Then, it is clear that the size of
this branching computation tree up to depth L is at most
O((45d)Y) = O(180%), and for second-to-base-case nodes
(that is, nodes with 0 < L < [log,s (w+ 1)] ) they involve
at most O(n) extra base cases, so the running time for the
algorithm to compute R(G,u, L) is O(n180%).

By definition, our estimation R(G, u, L) has the same bounds
as R(G,u) in Lemma[2]

LEMMA 3.

R(G,u, L)

27 dec() < R(G,u, L) < 1.

Formally we have the following key lemma, for which the
proof is laid out in Section [4

LEMMA 4 (CORRELATION DECAY). Let o = 0.9616. If
G = (UWV,E) is a bipartite graph with Ay < 5, then for
anyu € U,

|R(G,u, L) — R(G,u)| < O(a™). (1)

With this lemma, it is easy to estimate R(G, u) by R(G, u, L)
with an additive error of € by choosing L = O(log %) Then
combined with Proposition [T} we get the proof for Theorem

m
4. ANALYSIS AND CORRELATION DECAY

In this section, we establish the key correlation decay
Lemma To do that, a natural approach is to use induc-
tion, and show that the error decreases by a constant factor
along each recursion step. Unfortunately, this step-wise de-
cay is not true in our case. Instead, we perform an amortized
analysis on the decay rate by a potential function, and show
that step-wise decay is recovered on the new domain under
the potential function.

In Section we outline the induction and give a deriva-
tion of the amortized decay rate. We show that it suffices
to bound the amortized decay rates as in Claim [2] and [3]
which are proved in Section In particular, we show how
our choice of the potential function simplifies the amortized
decay rates and the proof.



4.1 Amortized Decay Rates
We use ¢(z) = In (In(1 + z)) to map the values R(G,u, L)
and R(G,u) into a new domain, and prove the following:
lpo R(G,u, L) — 2)
The choice of this potential function will become clear in the
next subsection.
Claim 1. The condition implies .

PRrROOF. Note that ¢(z) is an increasing function. Let
R = R(G,u), R = R(G,u, L), recall the bounds from Lemma
[l and [3] we have

poR(G,u)| < 12a".

ely5) < ¢(R), o(R) < (1),

As a result, by Mean Value Theorem, 37 : ¢(55) < § <
(1) such that

- de~'(y) Ay

R R| =S8 Je(R) — o(R)
(%)
<2In(2) - 120" = 241n(2) - .

where (&) follows from the fact

de™'(y)
dy

together with condition . This completes the proof.

=1+ ') (1+¢ ' (y) <22

O

Since the case d = 5 is applied only once at the root, we
first assume that 1 < d < 4 and show the following:

l¢ o R(G,u, L) — ¢ o R(G,u)| < 4a™. (3)

We prove it by induction on L. Let R = R(G,u),R
R(G,u, L), For the base case L = 0, we have

o(R) — o(R)| < o(1) ~ ol

Supposing the induction hypothesis holds for L < I, we
prove that it also holds for L =I. If u is an isolated vertex,
i,e. d=0, R= R =1. Now we assume that d > 0.

Let

) < 4.

w;

=11 (1 +]Ja+ xi,j)1> ,

i=1 j=1

h(x)

which is the analytic version of the recursion. We also write
h = h(x) for short.
Let y be the accurate vector with

Yij = poR(Gij, uij),
and ¥ be the estimated vector with
[log (wi +1)1)) -

Y(ys,;), which is applying

91,5 = ¢ o R(Gij, 5, max(0, L —

Define x 2 o~ !(y) for &, ; = ¢~

@~ ! entry-wise to y, similarly for & £ o~ '(§). Then
po R(G,u,L) = poh(x),
and
v o R(G,u) = p o h(X).
Denote
o(z) £ dfli) 1+z) 1111(1—|—:(:)

553

Now by Mean Value Theorem, 3y : 0 <~y <1,y =
(1 —+)§ such that, let X £ o 1(¥),

7y +

<poR(G u, L) — po R(G,u)
_Z O(p Oai;ojso ) - (G5 — viy)
_ o) .
Z (a;p” ) B(Ee,) i T Vi)

By induction hypothesis, we have

|:’3'L =i ]| <4amax(O,L7|'log1\4 (w; +1)7)

<4aL—f1081v1(wi+1)-\.
Let a = 0.9616, a; = o~ [ogm (wit 1]
have

, by substitution we

P(h(X))

oR(G,u, L — .
¢ o R( ) — )

po R(G,u)| < 4a

fm R

Therefore, the key is to bound the amortized decay rate

defined as
923 |5,

In particular, the following Claim [2| completes the induc-
tive proof for . Then condition (3) and Claim [3| implies
condition (2)), and concludes the proof of Lemma

i

0xi,j xm

Claim 2. For d < 4, and 75 < zi; <1, ka(x) < 1.

Claim 3. For %6 <z <1, ks(x) < 3.

4.2 Choice of Potential Functions

In this section, we establish Claim [2| and [3] and thus con-
clude the key lemma and main theorem. The amortized
decay rate kq(x) is a double summation over variables x; ;
of two layers. We first show that under our choice of the
potential function, Where o(z) = In(In(1 4+ z)) and thus
O(x) = dflf) = @ 1n<1+z), the double summation can be
simplified into a single summation after a suitable change of
variables. Let

— 4 [+

j=1
Now we have h = Hle
®(h)
&%)
P(zij)
d ; H;Ull 1+010”

— 1+

%

si, and Kkq(x) can be rewritten as

1
1+z1;1j

(z4,5)

wq

>

1+»LLJ j=1

Wiy

SR SN
+ @ij)
1+H] 114z, j=1

Qg

. h
T (1+h)In(l+h)

d . wy 1 w;
L ai [ 1m ( T
= Z w; [ In H(l + m”)
(14 h)In(1 + h) 1+HJ 1 1+131j j=1
d
h 51
(1+h)In(1 + h) ;a( S)nlfsi

)



Therefore, this specific potential function collapses the two-
layer decay rate into a single layer one, which only depends
on {s;}. As a remark, s; has a combinatorial meaning back
in the original tree recursion, which corresponds exactly to
an estimate of Pg, (v; = 0). In the following, we treat xq
as a function of {s;} rather than {z; ;}, which significantly
simplifies the proof.

Next we convert the bounds for z;; to bounds for s;.
Note that lowerbounding s; here is essentially by giving a
lowerbound of Pg, (v; = 0).

Claim 4.
17w

Tow e =% <t

As an intuition, this claim says that larger w; will only make
P¢, (v; = 0) closer to 1. In other words, if we treat v; as a
constraint, larger w; will only weaken the overall “influence”
of the constraint by making it almost always satisfied, which
allows the correlation to decay faster.

PRrOOF. Since s; = (1 + [}, (1 + ®i ;)" Y)Y, it is clear
that s; < 1. As z;; > %67 we have

so=(1+ [ +a)™

j=1

M 10
>(1 1+ —
>( +j];[l( +15) )

1
T 16wi  17wi
O

The rate k4 also involves parameters o; = o~ °8m (Wit D1
which are discontinuous functions in degrees w;. To handle

this, we group the variables into the following two parts:

L={i:wi<M}, and ILb={i:w; > M}.

From now on we set M = 45. For «;, we have the following;:

e If i € I, we have a; é being a constant;

e If i € I, we bound them as

o = o~ Mosas (wi+1)] < o o (wit1)—1

Let di = |11| and do = |[2‘, then di +ds = d. Next we divide
the summation in k4 into two parts, for ¢ € I; and i € I3
respectively.

e For i € I, recall that s; lies in a rather narrow range
17%i —
[W’ 1}, and w; > M = 45, we have
17%i 9
16w + 17ws — 1645 1745 10°

As we will see, for i € I3 and s; in these ranges, kq is
a decreasing function in s;. As a result, those terms in
kq corresponding to Iz can be upperbounded by %

e For ¢ € I, we use Jensen’s inequality to show that
the maximum is achieved when s;s are all equal to the
same value §.
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Finally, we will bound the decay rate by a function in a
single variable 5. Here is the formal definition and the proof.
We consider the symmetrized version of k4 as

s dy (-9 (5)
T (292 4 541) In(1 + 292 - gdr)

da
+5,

max kg < max Rq.
S S

PRrROOF. We begin with some elementary inequalities. Let

f(@) = (1 —e")(z —In(l —e7)),
@)=~ ))

e (1+ (1 —e)n (5
Since 3 < e” <1 for z € [~1In2,0], we have f”(z) < 0 and

1—e*
1/d1
f(z) is concave over x € [—1In2,0]. Let § = (Hieh sz) ,

by Jensen’s inquality, we have
Py
Z(l —38;)In 7 —Zsi = Z f(lns;)
i€l i€l

<> f(n3)

i€l

:dl-(1_§)1n15ﬂ

(4)

Let g(h) = In(1 + h) — 1+th since ¢'(h) = ﬁ > 0 for
0 < h <1, we have g(h) > ¢g(0) = 0, namely
h <1, for0<h<1 (5)

(I+h)In(1+h) =7
Also note that m is decreasing in h, and 2792 .

§% < h due to s; > %, we have

Si

ka <
s

h
(1+h)In(1+h) (Z a;(1 —s:)ln .

i€l

S
1787;

.a_l

14292 .8%)In(1 + 29

+ Z a;(1—s;)In
i€l
2—d2 . §d1

=1 ~§d1)z(1_5")ln1iisi

=
Sq

—[lo w;+1
+Za [log s (w;+ )1(1—31’)1111_81_
i€ly

2—d2 '§d1d1

< S(1-38)1
“a(l+279% . §h)In(l 4+ 292 - §%) ( S) n(l

—[lo w;+1 Si
+Za [log s ( +)1(178i)ln1_31'
i€ly

=)

Finally, it remains to show that, for i € I,

Si 1
< -.
—s8; — 5 (6)

Recall that for i € I, w; > M = 45, and by Claim [ we
have

o~ Mogar (wi+1)] (1—si)ln

1
ﬁ§3i<1.
1+ (3%)



Also note that (1—s) In 12 is decreasing in s for 75 < s < 1.
Let y(w) = w (£2)“ In (1%) o~ lesm (WHD=1 " we have

o~ Mg (wi+1)] (1—s;)In

< i).
7&,7W)

It can be verified that «(w) is a decreasing function in w for
w > 45, and as a result we have y(w) < v(45) < % Hence
the relation @ follows and we conclude the proof. [

Now it suffices to bound the decay rate with 4. As it is
a real function in a single variable § with bounded domain
[%, 1] , there is a standard calculus method to find their max-
imum values and we only need to verify that they satisfy
Claim ] and [3] We do that on a case-by-case basis.

Proof of Claim [2] Recall that R4 is single-variate in § with
% < 5§ < 1, parameterized by di, ds.

Also note that kg is increasing in both di,d2, whereas
dy +d2 = d < 4. So it suffices to check that k4 < 1 for each
case.

Case dy =0:
In this case, we have
P 4(1 - 5)8 N
T+ ) 1) \1-3

It achieves a unique maximum at §* ~ 0.758669, and thus

l%4(.§*) < 1.

Case dy = 1:
In this case, we have
f 3(1—§)5° m( §)+
T a@+2)m (3 (3 +2) \1-3

a unique maximum at §* = 0.7691, and thus
<1.

(S

It achieves
Fa < % + %

Case dz = 2:
In this case, we have

2(1 — 5)82
a(2+4)n(3(82+4)

k4 =

In s Jrg
1-35 5

It achieves a unique maximum at §* =~ 0.776043, and thus
Ry <0554 2 < 1.

Case ds = 3:
In this case, we have
. (1-28)3 < 3 ) 3
Ry = - In —- | + —=.
T a8 (38 T \1-5) "5

It achieves a unique maximum at §* ~ 0.780104, and thus

Ra <03+ 2 <1

Case dy = 4:
In this case, we have A4 < % <1. O

Proof of Claim Let f(8) = (1—38) 1n( £ ) For 1 <

-3 ) 2>
§ < 1, f achieves its unique maximum at §* = 0.782188,
and f(8") < 0.3. Hence &5 < # +1<3. O
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