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We study the efficiency guarantees in the simple auction environment where the auctioneer has one unit
of divisible good to be distributed among a number of budget constrained agents. With budget constraints,
the social welfare cannot be approximated by a better factor than the number of agents by any truthful
mechanism. Thus, we follow a recent work by Dobzinski and Leme [Dobzinski and Leme 2014] to approxi-
mate the liquid welfare, which is the welfare of the agents each capped by her/his own budget. We design a
new truthful auction with an approximation ratio of @ ~ 1.618, improving the best previous ratio of 2
when the budgets for agents are public knowledge and their valuation is linear (additive). In private bud-
get setting, we propose the first constant approximation auction with approximation ratio of 34. Moreover,
this auction works for any valuation function. Previously, only O(logn) approximation was known for lin-
ear and decreasing marginal (concave) valuations, and O(log? n) approximation was known for sub-additive
valuations.

1. INTRODUCTION

We consider a simple auction environment: the auctioneer has certain amount of di-
visible good to be distributed among a number of n agents. Since the good is divisible,
without loss of generality, we can always assume that it is of one unit. Each agent
i € [n] has a valuation function v;(-) for the good (willingness-to-pay) and a budget
B; to indicate the maximum amount of money she/he is able to pay to the auctioneer
(ability-to-pay). We always assume that the valuation v;(-) is private information for
agent ¢ and we shall study both public budget model where the budgets are public
knowledge to the auctioneer and private budget model where budget B; is also private
information for agent i. Upon receiving the bids, the auction allocates x; > 0 unit of
the good to agent i and charge her/him p; > 0 amount of money. The utility of agent i is
vi(x;) — p; if p; < B;; otherwise her/his utility is —oo since she/he does not have enough
money to pay. We call an auction truthful or incentive compatible if it is always a dom-
inant strategy for every bidder i to submit her/his true private information. We say a
randomized auction is universally truthful if it is a probabilistic distribution over de-
terministic truthful auctions. The auction is budget feasible if we always have p; < B;
for a truth-telling agent i.

If there is no budget constraint, the remarkable VCG auction [Vickrey 1961; Clarke
1971; Groves 1973] is a truthful auction to achieve optimal social welfare. However,
budget constraints for agents are very common in real life. For high value items such
as spectrum, this is due to the ability-to-pay: an agent who values the item very high
may not have enough money to pay it; even for relatively low value items such as key
words auction for search engine, budget is also the first thing to concern for advertisers,
since the volume for the auction could be very large, and a budget is used for risk
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control. The existence of budget brings in a huge challenge to the design of auctions and
even theoretical impossibility results especially when social warfare is the objective.
In particular, no truthful auction can approximate social welfare by a better factor
than the number of agents even with publicly known budget constraints and linear
valuation functions. The main reason is that we cannot truthfully allocate a significant
amount of good to agents with very high values but small budgets.

To give a more realistic benchmark for social welfare, a new notion called liquid
welfare was proposed by Dobzinski and Leme [Dobzinski and Leme 2014] as an alter-
native quantifiable measure for social efficiency. It is defined to be

W(x) = Z min{v;(z;), B;}.

Basically, each agent’s utility is capped by her/his budget. Therefore, an agent with
high value but small budget cannot contribute much to liquid welfare. This is a rea-
sonable measure as argued in the paper [Dobzinski and Leme 2014]: “efficiency should
be measured only with respect to the funds available to the bidder at the time of the
auction, and not the additional liquidity he might gain after receiving the goods in
the auction”. This is also the maximum amount of revenue an omniscient seller would
be able to extract from a certain instance. More justification for this measure can be
found in the paper [Dobzinski and Leme 2014].

With respect to this optimal liquid welfare objective, their paper gave two truthful
auctions both with approximation ratio of 2 in the public budget model with linear (ad-
ditive) valuation functions and proved a lower bound of # in this same setting. They ex-
plicitly asked whether one can have a truthful auction tflat provides an approximation
ratio better than 2 in this simple setting. For the more challenging private budget mod-
el, they provided an O(logn) approximation truthful auction for decreasing marginal
(concave) valuations, and an O(log? n) approximation auction for sub-additive valua-
tions. The main open question is whether a constant approximation exists or not. This
was not known even for simple linear valuation functions.

1.1. Our Results and Techniques

In this paper, we answer both of their open questions affirmatively. For the public
budget setting and linear valuations, we design a new truthful auction with an ap-
proximation ratio of ¢ = @ ~ 1.618, where ¢ is the golden ratio (i.e. the positive
solution for the equation t> = t + 1). For the private budget setting, we design the
first constant approximation auction with an approximation ratio of 34. More impor-
tantly, our auction works for all valuation functions, not necessary linear, concave or
sub-additive. This is a rather surprising result and this generality makes the auction
applicable in many different scenarios.

Our design techniques are also new. For the 2 approximation auction proposed
in [Dobzinski and Leme 2014], the rough idea is to use a uniform market clearing
price to sell the item to agents. Their ratio of 2 is tight for their mechanism even for
two agents. The bad case happens when one agent has very high value but limited
budget while the other agent has a relatively lower value but enough budget. In the
optimal allocation, the first agent gets very little share of the good, but this cannot be
archived by a uniform pricing scheme. The high level idea of our mechanism is that an
agent can pay certain uniform price per unit but only use up certain fraction of her/his
budget. In order to use up more of her/his budget, she/he needs to pay higher price per
unit. By this mechanism, an agent with high value but limited budget will still use
up all her/his budget but get less share of the good, which improves the efficiency. No-
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tice that our mechanism may not ensure market clearance, but we obtain better liquid
welfare guarantees.

Our above mechanism crucially uses the fact that the auctioneer knows the bud-
get for each agent. For the private budget setting, we go back to the uniform pricing
scheme. However, we do not know how to compute a good global uniform price truth-
fully in private budget setting. To overcome this, we make use of random sampling, one
of the most powerful techniques in truthful mechanism design [Goldberg et al. 2006;
Bei et al. 2012; Gravin and Lu 2013]. While previous works usually applied it only to
linear, submodular, or at most sub-additive valuations, here we will apply it to general
valution function in our setting, which is rather surprising. We randomly divide the
agents into two groups, compute the optimal liquid welfare for one group and use this
as a guide to charge agents in the other group.

In order to make this random sampling auction work, the contribution in an opti-
mal solution from different groups should be relatively balanced. In particular, if most
of the contribution is from one single agent, random sampling does not work. There-
fore, random sampling is usually combined with a Vickrey auction [Bei et al. 2012;
Chen et al. 2013] which works well in this unbalanced case. We also combine Vickrey
auction here for the modified valuation min{v;(1), B;}. This Vickrey auction was also
mentioned in [Dobzinski and Leme 2014] and was claimed to be truthful there. How-
ever, we notice that there is a subtle issue due to budget constraint and tie-breaking
which makes the auction not truthful. To overcome this, we modify the Vickrey auc-
tion in which the winner (with highest value) need to pay a bit higher than the second
highest value. In the case that the two highest values of the agents are very close to
each other, the auction simply refuse to sell the item. We also design another version of
modified Vickrey auction which works well when the two highest values are very close
to each other. We think that this observation of untruthfulness and these modifications
of Vickrey auction are of independent interest.

Regarding computational efficiency of our mechanisms, our mechanism for public
budget setting and linear valuations is polynomial time computable, and our random
sampling auction for private budger model is computationally efficient given the fol-
lowing two natural assumptions:

— Given a fixed price per unit and total fraction of available good, the agent can effi-
ciently compute his/her most profitable fraction. Basically, a demand oracle will do.

— There is an efficient algorithm to compute the optimal liquid welfare for the offline
optimization problem. A constant approximation is also fine but gives an approxima-
tion auction with a constant ratio larger than 34.

We believe that these two assumptions are reasonable and in some sense the min-
imal requirement. For example, if there is no efficient constant approximation even
for the offline optimization, there cannot be any constant approximation mechanism.
More discussion about this issue can be found in Section 3.3.

1.2. Related Work

Due to its practical relevance, many theoretical investigations have been devoted to
analyzing auctions for budget constrained agents, especially in direction of optimal
auction design which tries to maximize the revenue for the auctioneer [Borgs et al.
2005; Chawla et al. 2011; Feldman et al. 2012; Devanur et al. 2013]. For social effi-
ciency, a number of previous works focus on the solution concept of Pareto Efficiency,
which exist for the public budget model but not for private budget model [Dobzinski
et al. 2012; Fiat et al. 2011].
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Similar alternative quantifiable measures for efficiency for budget constrained a-
gents were also studied in [Devanur et al. 2013; Syrgkanis and Tardos 2013] but for
different solution concepts.

Another related topic is to study budget feasible mechanism design for reversal auc-
tion where the budget constrained buyer is the auctioneer rather than a bidder. This
model was first proposed and studied by Singer [Singer 2010]. Since then, several im-
provements have been obtained [Chen et al. 2011; Dobzinski et al. 2011; Bei et al.
2012].

2. PUBLIC BUDGETS

In this section, we consider the setting that agents’ budgets are public information
to the auctioneer, and the valuation function for each agent is linear. To simplify the
notations, in this section we will use v; to denote value per unit for agent i and thus
vi(z;) = v;z;. Without loss of generality, we assume that there are n agents with values

v1 > ... > v, and corresponding budgets B, ..., B,. Let ¢ = ‘[H which is the golden
ratio (i.e. the positive solution for the equation t* = ¢ + 1).

For public budget and linear valuations model, it becomes a single dimensional
parameter mechanism design problem with parameter v = (v, vs,...,v,), thus an
auction can be characterized by allocation rule x : R} — R and payment rule
p : R} — R? that maps v to a vector of allocations x(v) and a vector of payments
p(v). We present the Myerson’s Lemma [Myerson 1981], which is a powerful tool in
these settings.

LEMMA 2.1. A deterministic mechanism, with allocation and payment rule x,p re-
spectively, is truthful if and only if for each bidder i and each v_;, the following condi-
tions hold:

(1) Monotone Allocation: z;(v;,v—_;) < x;(v},v_;) for all v} > v;;
(2) The payments are such that: p;(vi,v_;) = v; - x;(v;,v_;) — fov zi(u,v_;)du.

Our new auction for public budget model is presented in Auction 1. Here we assume
that v, 1 = 0 if occurs.

Firstly, we verify that this is indeed a well-defined auction, namely the total amount
of good it allocates does not exceed one unit.

k
If LS50, By > v,
n k k B,
le lefz mln{vl,1}<zk71:1.
i=1 i=1 i= 12; 1 i=1 Zj:lBj

1 k
If % Zj:l Bj < Vk41,

k k

- Bi . .. 1 B;
;z, sz + XTpy1 = Z - mln{vi, 1} + ; - Z orns
< Z Z

THEOREM 2.2. For public budget model and linear valuations, Auction 1 is a truth-
ful, budget feasible mechanism with approximation ratio of at most ¢ for liquid welfare.

@Ukﬂ @Ukﬂ

These properties shall be proved in the following two subsections. The following
notations are used in the whole section. Let k¥ be as defined in Auction 1, pg =
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Auction 1: Auction for Public Budgets

input :n agents with valuations v1 > ... > v,, and corresponding budgets Bi, ..., By,
output: An allocation (z1,...,z,) and corresponding payments (p1,...,pn)
begin
Let k € [n] be the maximum integer s.t. Sh B <
if é Z?:l Bj 2 Vk+1 then
fori:=1to k do
Vi Z?:; B’
T Z?:BI B min{d;, 1};
end
fori:=k+1tondo
‘ z; < 0;
end
end
else
fori=1to k do
Vi Le 5
“‘Mgffl o
T *P'Ukikl min{d;, 1};
end
Thir & 5 — PO wzfz+1;
fori=k+2tondo
| 2 0;
end
end
for:=1tondo
| pi < vi - mi(vi,v_i) = [ @i(u,v_i)du; // Myerson’s Payment Rule
end
end

max{Zf:1 Bi, pvr41}, and k; be the maximum integer s.t. vi, > po. For agent i € [n]
let ©; = ;—é, which is as defined in Auction 1. We call instances with é Zle B; > vt
of case I and instances with i Z?:l Bj < vg41 of case II. In most of our analysis, we
distinguish these two cases and prove them separately. We have the following facts by
the rule of our auction:

—Incasel,vy >--- > v, > po > Vg1 > 20 2> %’ Z Vg1 = 00 2 Up;

—Incasell, vy >+ 2 vpy 2 po 2 Vg1 2+ Z Vi1 = B2 2 vy = 00 2 U

Thus ¢; > 1fori=1,2,...,k and@ie[%,1)fori:k1+1,k1+2,...,k.

2.1. Truthfulness and Budget Feasibility

By Myerson’s Lemma, we only need to verify that the allocation function in our auction
is monotone as our payment is already determined by Myerson’s integration.

LEMMA 2.3. (Monotonicity) The allocation function in Auction 1 is monotone, i.e.,
v; = x;(v;,v_;) Is non-decreasing.

PRrROOF. For case I, only the first k£ agents get non-zero unit of the item, thus
we only need to prove that for these agents, one’s share is non-decreasing if one
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increases her/his bid. This is obvious since allocation z; = B 7, min{d;,1} =
j=1

%B min{ S5 = B 1} of agent 7 is a monotone non-decreasing function in v;.

j=1

Now we assume that we are in case II where only the first ¥ + 1 agents get non-zero
unit of the item. By the same argument as above, the first & agents get no less unit of
the item if she/he increases her/his bid. We prove that this also holds for the (k¥ + 1)-th
agent.

For agent k + 1, as she/he continues to increase her/his value and keep the (k + 1)-th
place, her/his allocation will increase, since it is x;41 = é - Zf 1 %fik We consider
the following two cases when vy, increases further:

ZkH B;j < vy. In this case, the value of vy first reaches 1 ZkH B; when in-

creasmg and her/his allocation is updated to Zkﬁl mm{ka, 1} = E . Z]ffﬁl

= — 2 S j=1 5r-- After that, this becomes an instance of case I and the allocation
contmues to increase as v increases.

ZkH B;j > v In this case, the value of v;; first reaches v, when increasing, and
dlsplace player k to be the kth highest value. Then one of the following things will
happen:

—1If %(Zf;ll Bj + Byt+1) > vy, since fz B, < 1 ZJ 1 Bj < vy, it is still an
instance of case II and this agent k+1 is stlll the last agent in the winner set. The
only difference is that the agent k is not longer in the winner set and therefore

the allocation ;. gets updated to % - Zf N fk > ; - ﬁ Zle %.

—1If %(Z?: Bj + Bj41) < vg, then it is st111 an instance of case II but with agent &
as the last agent in the winner set. Agent &+ 1 become the second-to-last agent in
the winner set and the allocation z;. 1 gets updated to B "“ mm{ka, 1} > g’;;: >
1 1 k Bj )

o 9?2 Luj=1 ;"
In both cases, the allocation is non-decreasing.

This concludes the proof of truthfulness of our auction. O

LEMMA 2.4. (Budget feasibility) The payments defined in Auction 1 do not exceed
the budgets.

PROOF. For agents i > k in case I and agents i > &k + 1 in case II, this is trivial since
they do not get any good and pay nothing. For first k£ agents in both case I and case
II, their allocation do not change when they increase their valuations beyond v; > py.
In other words, their allocation is a constant when v; > py. Thus, their payments are
bounded by poz; = po % min{?d;, 1} < B;. The only remaining case is the (k+ 1)-th agent

in case II. The payment is bounded by vy 17p11 = Uk“(é - Zle v2§;+1) < ;Bk.i'_l,
where the inequality derives from the definition of £. This completes the proof. O

2.2. Approximation Ratio Analysis

Before we prove the approximation ratio, we obtain some bounds for the optimal liquid
welfare. We refer to the optimal liquid welfare as OPT = maxyx W (x). If we know all
the information, the optimal can be computed by a simple greedy.

LEMMA 2.5. ([Dobzinski and Leme 2014]) The optimal liquid welfare OPT occurs

at T} = Inin(ﬁ? 1 =325, 75]"), where 2]t = max(0, z).
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From this, it is easy to verify that the following expression for any j € [n — 1] gives

upper bounds for OPT, which holds evenif 1 — >/ , vl <0:
/ . B;
OPTgZBi+Uj+1(1—Zv—i). 1)

i=1 i=1
We propose our analysis of approximation ratio by the following lemma:

LEMMA 2.6. The liquid welfare achieved by Auction 1 is at least i -OPT.

PROOF. We prove for case I first. For i < k1, since v; > pg, we have v;x; = f"”lB >
j=1217
B;. For k; < i < k we have v;z; = Z?jiBj min{d;,1} > 2B, as 9; € [é, 1) for ky <i < k.
Thus

ZB+ZB

i=k1+1

For optimal liquid welfare, we shall prove that

k Foopoq ks k 1
OPT <> B +(1— 2 Zp = B, B;(p — .
_Z +( Z o) o @Z +,Z (0= 25
=1 i=ki1+1 1=1 i=ki+1
The equality part is by substituting py = Zle B;, v; = Zk and direct calcula-

tion. We prove the inequality by a case analysis in the followmg

_Zf:klﬂ B < sk B < 1. We use the bound (1) for OPT with j = k and the fact

that v, < épo-

k k k

k
2 Bz
JEED W RRNNIED S iFD S TN Si
i=1 i1 Vi i=1 sk Vi
k k
B;. 1
<N"B+(1- ==
<D Bi+(l= > o
=1 i=ki+1
—Zf ko +1 <1< Zz 1 o . Then in the optimal solution, first & agents are not fully

occupled(whlch means in the optimal solution, agent ’s budget is not used up). Thus
nothing is allocated for agents ¢ > k + 1. In this case, we have OPT < Zle B;, <

Zle Bi +(1— Zf:klﬂ %)ipo as the last term is non-negative.
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—1< Zf:,ﬁﬂ f— <>k, % We use the bound (1) for OPT with j =k — 1:

k—1 =l p k
7 Bz
0P <Y B+ (1-Y B =Y - B,
i=1 i=1 ' i=1 i=1 '
LY
< ZB A= D,
i=k1+1 i
' B 1
SzBri-(l_ %)*P@
i=1 i=kt1 0¥
The last inequality uses the fact that (1 — Zf kit o Biy <0 and vy > po

To bound the liquid welfare of our auction, we need to give a good bound for %7 for
agents i € [k1 + 1,k]. Noticing that for these agents, 0; € [; 1], we shall prove that

o2 > %(ap — 5 -1, To prove this, consider the following function

Y= o 1
f(t) t289 € [;71}
The derivative of f(¢) is
1 1.3 1
"y =—22 13- — 212 _9o,4]<0 wh =, 1].
f(t) thriaw4 754[@ o] <0 w ente[so, ]

So f(t) is monotone decreasing in interval [i, 1], and frax = f(%) = .

By the property of f and the fact that o; € [é, 1) fori =k +1,ks +2,...,k, it is
obvious that Vi € [k1 + 1, k], 62 > é((p — 5;)- Thus

1 1
<2
W)z Bit > Bidiz) Bit >, Bi(e— )
i=1 i=k1+1 i=1 i=k1+1
k}l k 1
=D _Bi+ Y Bilp——))
i=1 i=ky+1 ¥
1
> —OPT.
@

This completes the proof for instances of case I and now we prove for instances of case

II. For i < k; since v; > puy4 we have v;z; = vle min{?;,1} > B;. For k; <i < k we

have v;z; = U“PL min{9;,1} = wjk;l Dipvry1 = 02B; < B;. For i = k + 1 we have
k
1 B;
Ve 1841 = Vhp1 (— — ) < 7Bk+1 < Biy1-
¢ z; P21 @2

where the first inequality derives from the definition of k.
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Thus, we can bound the liquid welfare as follows

ZB + Z Bid? 4 vp 12041

i= k1+1
1 1 &
fZB+ Z BU +7Uk+1 - Z B;
i=k1+1 (P =1 ¥ i=k1+1
1——ZB+—vk+1+ Z ).

i=ki1+1 90

For optimal liquid welfare, we use our bound (1) with j = k to get

k k
B
OPTSZBi_F(l_,Z ” 'Ulc+1 ZB + Vg1 + Z QDUZ
i=1 i=k1+1 i=k1+1
where the equality part is by substituting 9; = —%— and direct calculation. To bound

PUk41
the liquid welfare of our auction, we need to give a good bound for % for agents i € [k; +
1, k]. Noticing that for these agents, 0; € [, 1], we shall prove that 07 — 2 > (1 z-).
To prove this, consider the following function

1 1 1 1
g(t) = (" = =) /(1= —) = (t+ ).t € [~,1].
©? ot @ [so |
It is clear that g is monotone increasing on ¢ in the interval [%, 1], SO gmin = g(é) =
1 1
2? > 5
By the property of g and the fact that o; € [; 1) fori =k +1,ky +2,...,k, it is
obvious that Vi € [ky +1,k], 07 — 5 > (1 — 5i-). Thus
. 1
W(x) 1——ZB+—vk+1+ Z (82 — =)
i=k1+1 ¥
> — Z B; + ka+1 + —
i=k1+1
> —OPT.
¥

This completes the proof for approximation ratio. O

To conclude this section, here we provide the following example showing that the anal-
ysis of our auction is tight.

EXAMPLE 2.7. (Tightness) Consider two agents with profiles v = 1, By = € and
vy = é, By = 1 — € where € € ( 1). It is easy to verify that OPT = ¢ + (1 — e) For

Auction 1, W(x) = By + Bz% =e+(1- 6) . When ¢ — 0, W(x) = %OPT

3. PRIVATE BUDGET

In this section, we deal with the setting that agents’ budgets are private information
that the auctioneer must design a mechanism which incentives agents to report their
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true values and budgets. We also study the general case that the valuation function
v;(+) for each agent i could be any monotone non-decreasing function.

For a subset of agents Q C [n], let OPT(Q) denote the optimal liquid welfare for
agents in group Q. Formally OPT(Q) = max; .o min{v;(z;), B;}. In particular, let
OPT = OPT([n]) which is our objective in this setting.

Our new auction for private budget model is presented in Auction 2, where the pa-
rameters v > 1,0 < 8 < % and 0 < u < 1 shall be specified later.

Basically, it is a combination of the following three basic auctions:

— With probability of £, we run the first modified Vickrey auction. Agent i; with high-
est 9; = min{v;(1), B;} gets the total unit of the good and needs to pay p;;, = yv;, > s,
, which is strictly higher than the second highest v;. If agent i, is not willing to pay
(vi, < 77;,) or does not have enough budget to pay (B;, < vv;,), we simply refuse to
sell the item to any one.

— With probability of %“, we run the second modified Vickrey auction. Agents are ran-
domly divided into two groups S and 7. We only sell the total unit of the good to the
first agent (with a prior fixed order) in group S who is willing and able to pay the
price % If there is no such agent in group S, we simply refuse to sell the item
to any one.

— With the remaining probability of 1 — i, we run a random sampling auction. Agents
are randomly divided into two groups S and 7. We sell half of the good to agents in
group S with fixed price SOPT(T) per unit. More precisely, for each agent in group S
with a prior fixed order, we simply offer a price SOPT(T) per unit and let the agent
get the most profitable fraction of the good within the availability of the good and
budget of the agent. This is precisely captured by the expression

i arg max {vi(z) — BOPT(T)x}.

. B,
zgmln{rs,WM}

If there are multiple = that achieve the maximum, we choose the largest one. We do
the same thing for agents in 7" but with price SOPT(5).

We call the combination of the first two auctions the modified Vickrey auction and the
third part as the random sampling auction.

THEOREM 3.1. Choosing 8 = 3,7 = /X and p = 3, Auction 2 is a truthful,

budget feasible mechanism which guarantees liquid welfare of at least iOPT.

3.1. Truthfulness and Budget Feasibility

Before we prove that our auction is truthful, we first point out that the ordinarily
Vickrey auction (i.e. v = 1) on ¥; = min{v;(1), B;} is not truthful. Here is an example
in which the valuation function is additive (thus we use v; to denote price per unit to
illustrate): two agents with profiles (v1, B1) = (v2, B2) = (2, 1). If both of the agents bid
truthfully, whatever the tie-breaking rule the Vickrey auction uses (even if we allow
randomness), at least for one of the agents, the probability she/he gets the total unit
of good is strictly less than 1. For symmetry, we assume that the probability agent 1
gets the total unit of good is strictly less than 1. When agent 1 does get some fraction
of the good, she/he needs to pay 1 per unit according to the Vickrey’s rule. As a result,
the expected utility of agent 1 is strictly less than 2 — 1 = 1. However, if agent 1 bids
(vi,B}) = (2,1.5), she/he will get the total unit of the good for sure based on Vickrey
auction and the payment is still 1, which does not exceed the budget. Therefore, her/his
utility become 1, which is strictly better than bidding truthfully.
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Auction 2: Random Sampling Auction for Private Budgets

input :n agents with values v1,...,v, and budgets B, ..., B,
output: An allocation (z1,...,z,) and corresponding payments (p1,...,pn);
begin

for:=1tondo
‘ z; = 0,p; < 0, v; min{v¢(1)7 Bi};
end
end
With probability of £ begin
11 <— argmax; ¥;, 12 — arg maxXi-;, Us;
if Vip > YUy then
| @iy < 1, piy < Y04y

end
end
With probability of 2 begin
Randomly divide all agents with equal probability into set S and T
U < max;er Ui
forall the i € S do

if 5; > %T then

Ty < l,pl‘ < UTT;
Halt

en
end
end
With probability of 1 — 1 begin
Randomly divide all agents with equal probability into set S and T, zs + 3, 21 + %;
forall the i € S do
X arg max {vi(xz) — BOPT(T)x};

z<min{zg, [30;;’}'(’1") }
pi < BOPT(T).%'Z,
TS < Ts — X
end
forall the i € T do
X arg max {vi(xz) — BOPT(S)z};
mSmin{mT,ﬁo;;%(S)]

pi < BOPT(S)xz;;
T < T — T4
end
end

This is the reason why we need to modify the Vickrey auction. In the following, we
prove that Auction 2 in which our modification is applied, is universally truthful.

LEMMA 3.2. Auction 2 is universally truthful.

PROOF. The auction is a probabilistic combination of three auctions. For the second
and third auctions, it also uses random bits to do the partition of (5,7"). We only need
to prove that all of them are truthful when these partitions are fixed.

For the first modified Vickrey auction on value ; = min{v;(1), B;}, two cases may
happen:

—7T;, > Y0;,. In this case, for any agent j other than 4, v; < 7;, < 7;,7. If j wants to
change her/his bid to become the winner, she/he needs to pay v;,y, which is strict-
ly greater than either her/his true budget or true value. This leads to not enough
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budget or negative utility. For i1, she/he does not have the incentive to change value
or budget, since the payment is decided by i, which is no larger than her/his value
and also within her/his budget.

—0;, < 7Y0;,. In this case, no one is the winner. For any agent j other than iy, it is the
same argument as before. For i, if she/he wants to change her/his bid to become the
winner, then she/he needs to pay 7v;,, which is strictly greater than either her/his
true budget or true value. This leads to not enough budget or negative utility.

Now we prove for the second modified Vickrey auction. For any agent in 7', she/he
does not get any fraction of the good regardingless of her/his bid. So, they do not have
incentive to lie. For any agent in S, she/he cannot change the price per unit or her/his
position in the order by changing her/his bid. When an agent in S has chance to get
the good, it is simply a take-it-or-leave-it offer with fixed price. So, they do not have
incentive to lie.

For the random sampling auction part, each agent cannot change her/his price per
unit or position by changing her/his bid, and given a fixed price and position, a agent
has already got the most profitable fraction of the good. Therefore, agents do not have
incentive to change their bids.

Thus, all the three auctions above are truthful. This concludes the proof for univer-
sally truthfulness. O

LEMMA 3.3. Auction 2 is budget feasible.

PROOF. For the first modified Vickrey auction, if no one wins, everyone’s payment
is zero; if 4; wins, then she/he pays 7, < ¥;, = min{v;, (1), B;, } < B;,. For the second
modified Vickrey auction, if no one wins, everyone’s payment is zero; if i* wins, then
she/he pays WUTT < U = min{v;« (1), By } < By

For random sampling auction and agent i € S, p; = 2;-BOPT(T) < min{zxg, ﬂOPLYi“(T)}’
BOPT(T) < gopiry - BOPT(T) = B;. Same thing also holds for agents in T

This concludes the proof for budget feasibility. O

3.2. Approximation Ratio Analysis

We first prove the following lemma, which bounds the liquid welfare of the auction by
its revenue. This is useful in our analysis.

LEMMA 3.4. Liquid welfare produced by any truthful and budget feasible mecha-
nism is at least the revenue of the auctioneer.

PROOF. For an allocation x = (21,2, ...,2,) and payment p = (p1,p2, ..., ps) given
by such a mechanism, we have v;(z;) > p; by truthfulness and B; > p; by budget
feasibility. So the liquid welfare W (z) = >, min{v;(z;), B;} > >, pi. O

Based on Lemma 3.4, we prove that the modified Vickrey auction part performs well
when max; v; is large.

LEMMA 3.5. Let~y =,/ %. Then the modified Vickrey auction part get expect liquid
welfare of % max; Uj.
We note that by choosing ~ arbitrarily close to 1, we can get liquid welfare arbitrar-

ily close to £ max; v;. We choose the above value for the notational simplicity of the
presentation.
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PROOF. Ifthe highest two o; are not relatively close to each other, namely v;, > ~7;,
(41,12 are as defined in Auction 2). Then the first modified Vickrey auction successes
and gets expect liquid welfare of £ max; v; > ?{ﬁ max; v;.

If the highest two v; are relatively close to each other namely v;, < 70;,. Then in
the second modified Vickrey auction, with probablhty these two agents iy, i are put
into different groups. When this event occurs, the second modified Vickrey successes

and gains a revenue of at least 2% % Accordlng to Lemma 3.4, liquid welfare ex-
tract by the second modified auction is greater than this revenue, thus contributes at

least 22X:%: Jjquid welfare. Therefore, the expect liquid welfare in this case is at least
2?#%71113::5 Y= ?1’0 max; ;. O

If max; v; is already a significant fraction of the optimal solution, we are already
done. In the following, we shall prove that the random sampling auction performs well
when max; 7; is small. We first give some definitions. Let 7;(z) = min{v;(x), B;} be
the capped valuation for agent i. Then, for any allocation x = (x1,...,z,) , we have

W(x) = >, vi(z;). The following notion plays an important role in our analysis. We
define

D;(p) = arigax{@i(m) — zp}.

If there are multiple x that achieve the maximum, we choose the largest one. It is very
crucial that we use 7;(z) rather than v;(z) in the definition of D;(p). By this definition,
we can directly see that for any p > 0 and = < D;(p), we have D;(p) < % and v;(z) < B;.
This D;(p) also gives a lower bound of agent i’s demand if there are enough availability
of the good. Formally, we have the following lemma.

LEMMA 3.6. Letp > 0and D;(p) < X. Then

arg max {v(z) — zp} > D;(p).
l<HllIl{X Bi }

PROOF. The left hand side of the inequality is agent i’s most profitable fractlon %w-

en price p per unit and the total availability of good of X. For x < D;(p) < min(
we have

v(x) —xp = v;(z) — zp < 0;(Di(p)) — Di(p)p < vi(Di(p)) — Di(p)p-

The first equality uses the fact that v;(z) < B; for z < D;(p); the first inequality uses
the definition of D;(p); and the last inequality uses the fact that v;(z) < v;(z) for any «.
Since we always break ties in favor of larger x, the maximum of v(z) — zp in the LHS
is archived by « > D;(p). This completes the proof. O

Let W(p) = ", v:(D;(p)). The intuition for this notion is that with fixed price p, W (p)
gives the maximum liquid welfare from all agents. We present the following lemma
giving an lower bound for this notion using OPT and fixed price p.

LEMMA 3.7. Foranyp >0, W(p) > OPT — p.

PROOF. Let (z1,...,2,) be an instance of optimal allocation. By the definition of
D;(p), we have v;(D;(p)) — Di(p)p > vi(xi) — z;p , and thus v;(D;(p)) > vi(xi) — z;p. Sum
up these inequalities for all i € [n], we get

Zﬁi( i >Zvl x;) — = OPT — pZ¢Z>OPT p.
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The following facts on relationship between OPT(S), OPT(S) and OPT, are obvious.

LEMMA 3.8. Let (S,T) be a partition of [n]. Then OPT(S) < OPT, OPT(T) < OPT
and OPT(S)+ OPT(T) > OPT.

By choosing p = SOPT in Lemma 3.7, we get that
W (BOPT) = Z 5;(D;(BOPT)) > OPT — BOPT = (1 — B)OPT.

This is a constant fraction of OPT. Since OPT(S), OPT(T) < OPT, the fraction of
good demanded by agent i in the random sampling auction is at least D;(50PT) by
Lemma 3.6 providing that there are enough fraction of the good remains. This is a
good approximation of the optimal liquid welfare when each of v;(D;(80OPT)) is small.
Let W = W(BOPT), Ws = ZiGS ﬁz(DZ(BOPT)) and Wy = ZieT ﬁz(Dl(ﬁOPT)) We
first prove that both sets S and T get significant amount of demands at fixed price
BOPT with high probability in this case.

LEMMA 3.9. Ifmax;cp, 0:(Di(BOPT)) < a - OPT, then

B a(l =)

PROOF. Let I; to the random indicator variable for the event ¢ € S. Then Wg =

Var(Ws) ZVar 0;(D;(BOPT))I;) = Z(E((T;i(Di(ﬂOPT))Ii)Q)—E(T;i(Di(B()PT))Ii)Z)

€S 1€S
= Z D;(BOPT)))?
’LGS
w1
<
= aOPT 3 (@OPT)?

where the inequality uses the fact that max;cy v;(D;(BOPT)) < «OPT.
By Chebyshev’s Inequality, we have:

B B W — BOPT

Pr(5OPT <Ws <W — SOPT) = Pr(|Ws — E(Ws)| < ————)
Var(W.
>1- (W?IL;(OPS’ZZ))Q
2
> aWOPT
=" (W —=BOPT)?
a(l - pB)
SR T

where the last inequality uses the fact that W > (1 — B)OPT. Since Wg + Wpr = W,

the event of (gOPT <Ws <W-— OPT) is the same as the event of (Wg, W > fopt)
This completes the proof. O

The following lemma gives a bound of liquid welfare for the random sampling auc-
tion part.
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LEMMA 3.10. Ifmax; v; = o - OPT, then the random sampling auction part gets at
least expected liquid welfare of (1 — p)(1 — ((;(12;))2 )(5 - $)BOPT.

PROOF. Since max;c[,) 0;(D;(BOPT)) < max; v; = a- OPT, by Lemma 3.9 we know

that Pr(Ws, Wy > gOPT) >1-— (D{(_lg ﬂﬁ))z . We only bound the liquid welfare when this

good event (Wg, Wp > gOPT) occurs, which occurs with probability (1 — g(j; 5’6))2 ).
Not only @;(D;(BOPT)) is bounded from above, D;(SOPT) is also bounded from
above. From the definition of D;(-), we know that o;(D;(OPT))—BOPTD;(SOPT) > 0.

Therefore,

v (D;(BOPT)) _ «
(ﬂOPT)SWSB'

We first consider liquid welfare obtained by agents in 7. If every agent : € T gets at
least vi(Dl-(ﬂOPT)) fraction of good, then the total liquid welfare of our auction is at
least Wy > opt Otherwise, due to Lemma 3.6, it must be the case that there is not
enough good remains. Since D;(SOPT) < " , we know that at least s—Z fractlon of the
good is sold. This extracts a revenue of (3 — 7) BOPT(S) and thus also hquld welfare of
this amount by Lemma 3.4. Put these two cases together, the liquid welfare for group T’
in our auction is at least min{2OPT, (1 — 9)BOPT(S)} = (5 — §)BOPT(S). By similar
argument, the liquid welfare from agents in group S is at least (5 — $)BOPT(T).
To sum up, the total expected liquid welfare is at least

(1-pya-20=0), 1 _a1l-p)

g2 (g— 5 FOPT(S)OPT(D) > (=1~ =53 (5 = )OPT.
O

G5

2 B

Finally, we estimate the approximation ratio of Auction 2.

LEMMA 3.11. Choosing 3 = 3,7 = \/% and . = 3, the approximation ratio of
Auction 2 is at most 34.

PROOF. Assume that max; v; = o - OPT. By Lemma 3.5 and Lemma 3.10, the total
expected liquid welfare is at least

3u a(l-6).,1 «
Latr1-pi-—Lhy=-% PT.
(Ha+a-ma- 205006 -5s)0
Substitute 3, A with the above specified value and s1mp11fy, the above expressmn is
(2a? - Za + 2)OPT. One can easily check that the minimum of this expression is

greater than OPT thus our auction has an approximation ratio of at most 34. O

3.3. Robustness of the Auction

Our auction is rather robust in terms of the setting. We do not have any requirement
about the valuation functions. Technically, in the presentation we still use the assump-
tion that the valuation function is monotone. In most of the cases, this is true or with-
out loss of generality since the agent can simply discard certain amount of the good.
Even if this is not the case, we can also easily modify the auction to be compatible with
possible non-monotone valuation functions. The only place we need to modify is that
when the current auction assigns the total unit of the good to an agent, it assigns the
most valuable fraction to her/him and discard the remaining.
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For the simplicity of the presentation, we assume that the good is divisible. Our
auction is also good if the items are not continuously divisible. For example, the mech-
anism works for the multi-unit auction even if each unit of the good is not divisible.

Another issue has not been discussed is the computational complexity of the auction
as we mainly focus on the approximation ratio caused by the truthfulness and bud-
get feasibility constrain. The computational complexity depends on how to represent
the input valuation functions. If these are linear valuations and each can be simply
represented by a single number, our auction is indeed efficient. If the valuation func-
tions are given as generic value oracles, then it is even intractable to computable the
most profitable fraction for an agent given a fixed price. So, a reasonable assumption
is that valuation functions are given by demand oracles or in some concise represen-
tation. Then the main problematic step is to compute the optimal solution for an off
line instance. This could be at least NP-hard even for some concise representations.
For example, we can easily encode knapsack problem here. Then, another robustness
of the auction is that it still works well when we replace the optimal solution with
some constant approximation. Therefore, as long as we can design an polynomial time
algorithm with constant approximation ratio for the off line optimization problem, we
can design an auction, which is truthful, budget feasible, of constant approximation
and polynomial time computable.
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