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Abstract

We give a complete characterization of the two-state
anti-ferromagnetic spin systems which exhibit strong
spatial mixing on general graphs. We show that a
two-state anti-ferromagnetic spin system exhibits strong
spatial mixing on all graphs of maximum degree at
most ∆ if and only if the system has a unique Gibbs
measure on infinite regular trees of degree up to ∆,
where ∆ can be either bounded or unbounded. As a
consequence, there exists an FPTAS for the partition
function of a two-state anti-ferromagnetic spin system
on graphs of maximum degree at most ∆ when the
uniqueness condition is satisfied on infinite regular
trees of degree up to ∆. In particular, an FPTAS
exists for arbitrary graphs if the uniqueness is satisfied
on all infinite regular trees. This covers as special
cases all previous algorithmic results for two-state anti-
ferromagnetic systems on general-structure graphs.

Combining with the FPRAS for two-state ferro-
magnetic spin systems of Jerrum-Sinclair and Goldberg-
Jerrum-Paterson, and the very recent hardness results
of Sly-Sun and independently of Galanis-S̆tefankovic̆-
Vigoda, this gives a complete classification, except at
the phase transition boundary, of the approximability
of all two-state spin systems, on either degree-bounded
families of graphs or family of all graphs.

1 Introduction

Spin systems are well studied in the areas of Statistical
Physics, Applied Probability and Computer Science as
a general framework to capture the essence of how
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local interactions and constrains affect the macroscopic
properties of particle systems. A system is usually
described by a graph, with each vertex in one of a fixed
number of states called spins, and edges specifying the
neighborhood relation of the system.

Let G(V,E) be a graph and q be the number of spin
states. A configuration of the system is one of the q|V |

possible assignments σ : V → [q]. Each configuration σ
has an energy H(σ) as a sum over all edges and vertices,
such that the contribution of an edge (u, v) ∈ E is
determined by a symmetric function of the spin states
σ(u) and σ(v), and the contribution of a vertex v ∈ V
is determined by a function of its spin state σ(v). The

weight of a configuration σ is w(σ) = exp(−H(σ)
T ),

where T is the temperature. We focus on the two-state
spin systems. Up to normalization, a two-state spin
system is fully captured by three parameters (β, γ, λ),
where β and γ determine the symmetric function for
edge contribution and λ, also known as the external
field, determines the function for vertex contribution.
The Gibbs measure is a natural probability distribution
over all configurations such that the probability of a

configuration σ is w(σ)
Z , where the normalizing factor

Z =
∑

w(σ) is called the partition function. The
partition function encodes rich information regarding
the macroscopic behavior of the spin system. However,
for almost all nontrivial settings it is #P-hard to
compute the precise value of partition functions.

One of the most important properties of spin sys-
tems is the correlation decay, which says that the corre-
lation between the marginal Gibbs distributions of two
vertices decays rapidly with respect to the distance be-
tween the two vertices. This property is also called weak
spatial mixing [25]. Of greater algorithmic significance
is the strong spatial mixing, which says that the corre-
lations decay in the presence of arbitrary fixed spins at
other vertices. For two-state spin systems, the strong
spatial mixing may imply efficient approximation algo-
rithms for the partition function. It is then an impor-
tant question to characterize the systems which exhibit
strong spatial mixing on arbitrary instances of graphs
by the parameters of the systems.

67 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



A two-state spin system is ferromagnetic if adja-
cent vertices favor agreement of spins, and is anti-
ferromagnetic if otherwise. For all two-state ferromag-
netic spin systems, the partition functions can be effi-
ciently approximated [10,12]. In the anti-ferromagnetic
region, the correlation decay plays a central role in the
approximability of partition functions. It is believed
(see [18]) that for such models the approximability of
the partition function is characterized by the unique-
ness of Gibbs measure on infinite regular trees, which
is equivalent to the weak spatial mixing on the infinite
regular trees. This condition is called the uniqueness
condition.

In a seminal work [25], Weitz shows that for the
hardcore model strong spatial mixing is characterized
by the uniqueness condition. Restrepo et al. [19] gave
a new proof of the same result by an elegant message
contraction argument (or equivalently the potential
method). This is the first time a potential-based
analysis is combined with correlation decay techniques
to get tight bounds for approximate counting. In a
recent work of Sinclair, Srivastava, and Thurley [20] the
same tight bound is proved for the anti-ferromagnetic
Ising by the potential method. On the hardness side, it
is proved for the hardcore model by Sly [22] and Galanis
et al. [6], and very recently for the general two-state
anti-ferromagnetic spin systems by Sly and Sun [23] and
independently by Galanis, S̆tefankovic̆, and Vigoda [7]
that violating the uniqueness condition implies the
inapproximability of partition functions. Two questions
remain open for our complete understanding of the
correlation decay and computation in two-state spin
systems: the characterizations of the strong spatial
mixing and approximability of general two-state spin
systems.

1.1 Our results We characterize the two-state anti-
ferromagnetic spin systems which exhibit strong spatial
mixing on general degree-bounded graphs or arbitrary
graphs by the uniqueness of Gibbs measure on infinite
regular trees.

Theorem 1.1. For any finite ∆ ≥ 2 or ∆ = ∞, a
two-state anti-ferromagnetic spin system exhibits strong
spatial mixing on graphs of maximum degree at most ∆
if and only if the system exhibits uniqueness on infinite
d-regular trees for all d ≤ ∆.

Due to Weitz’s self-avoiding walk tree construction
[25], the strong spatial mixing of a two-state spin sys-
tem on degree-bounded graphs immediately implies an
FPTAS for the partition function. Indeed, we show an
even stronger notion of correlation decay introduced in
a previous work [15], namely the computationally ef-

ficient correlation decay, which gives FPTAS not only
for the degree-bounded graphs but also for arbitrary
graphs with unbounded degrees, when the correspond-
ing uniqueness condition is satisfied.

Theorem 1.2. For any finite ∆ ≥ 3 or ∆ = ∞,
there exists an FPTAS for the partition function of the
two-state anti-ferromagnetic spin system on graphs of
maximum degree at most ∆ if for all d ≤ ∆ the system
parameters lie in the interior of the uniqueness region
of infinite d-regular tree.

In the above two theorems, the ∆ = ∞ case represents
the graphs of unbounded degree.

Due to a very recent hardness results of Sly and
Sun [23] for general two-state spin systems and an
independent result of Galanis, S̆tefankovic̆ and Vigoda
[7] for a less general setting, violating the uniqueness
condition implies inapproximability of the partition
function.

Theorem 1.3. ( [23] and [7]) For any finite ∆ ≥ 3
or ∆ = ∞, unless NP = RP there does not exist an
FPRAS for the partition function of the two-state anti-
ferromagnetic spin system on graphs of maximum degree
at most ∆ if for some d ≤ ∆ the system parameters lie
in the interior of the non-uniqueness region of infinite
d-regular tree.

The original theorem in [23] holds for d-regular
graphs with fixed d, which immediately implies the
hardness for degree-bounded graphs or arbitrary graphs.
And the hardness condition in both [23] and [7] re-
quires the non-uniqueness on a d-regular tree with d ≥
3. But the uniqueness on the infinite 2-regular tree
(i.e. the infinite path) always holds for any two-state
anti-ferromagnetic spin system, thus the condition in
Theorem 1.3 suffices.

For graphs of maximum degree 2 or less, the parti-
tion function can be computed exactly in polynomial
time. Thus Theorem 1.2 and Theorem 1.3 together
with the FPRAS for two-state ferromagnetic spin sys-
tem [10,12] give an almost complete (except at the phase
transition boundary) classification of the approximabil-
ity of the partition function of all two-state spin systems,
on either degree-bounded families of graphs or family of
all graphs.

1.1.1 Regularity and monotonicity In Statistical
Physics, the correlation decay is usually studied on
regular graphs or even structurally symmetric graphs
(e.g. Bethe lattice). Although for hardness results
considering only regular graphs will strengthen the
lower bounds, from algorithmic perspective it is more
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general to consider spin systems on general graphs.
The approximation algorithms in [25] for the hardcore
model and [20] for the anti-ferromagnetic Ising model
are both for general graphs with bounded maximum
degrees. As discussed in [20, 23], up to translation
of parameters the hardcore and Ising models together
are complete for general two-state spin systems on d-
regular graphs with fixed d. However, this does not
cover the most general case, namely the general two-
state spin system on general graphs, of either bounded
or unbounded degree. The result in [20](Corollary 1.3)
also gave one sufficient condition for correlation decay
for general two-state spin system on general graphs with
maximum degree ∆. But this condition is not tight. A
fundamental reason for this gap is the non-monotonicity
of general spin systems.

The well studied hardcore and anti-ferromagnetic
Ising models (along with all two-state spin systems with
β, γ ≤ 1) are both monotone spin systems, in the sense
that the uniqueness on infinite d-regular tree implies
the uniqueness on all infinite regular trees with smaller
degrees. This monotonicity does not necessarily hold in
general two-state spin systems.

In [25], Weitz established the following implication
in the hardcore model:

Theorem 2.3 in [25]. Strong spatial mixing on a d-
regular tree implies the strong spatial mixing on all
graphs of maximum degree at most d.

In [25], Weitz also remarked without proof that
this implication holds for all two-state spin systems
(indeed this is rigorously proved for anti-ferromagnetic
Ising model in [20]). With this to be true, devising
approximation algorithms for two-state spin systems
on degree-bounded graphs is reduced to verifying the
strong spatial mixing on d-regular trees. This has been
accepted as a fact about the two-state spin systems
and has become a building block for approximation
algorithms for such systems (see Theorem 2.8 in [20]
and the discussions in [21, 22]). It was also raised as a
conjecture in [21] whether the claim holds for general
multi-state spin systems.

As a byproduct of our analysis (see Section 6),
we find that this well-believed implication between the
strong spatial mixing on d-regular tree and on graphs of
maximum degree at most d holds only for monotone spin
systems (including the hardcore and anti-ferromagnetic
Ising models). For general two-state spin systems the
worst case for uniqueness as well as strong spatial
mixing among all degree-bounded graphs is indeed a
regular tree, but may no longer be the one of the highest
degree. A bright side of this complication is that higher
degrees may yield much faster correlation decay, making

possible the FPTAS for graphs with unbounded degrees.
These new phenomena suggest that the general two-

state spin systems have much richer structure than
the well-studied monotone spin systems such as the
hardcore and anti-ferromagnetic Ising models. The
former approach via the strong spatial mixing on d-
regular tree which succeeds in monotone spin systems
on general graphs and general spin systems on regular
graphs, meets a barrier when dealing with general
spin systems on general graphs. We give a unified
approach to the correlation decay in general two-state
spin systems, through the strong spatial mixing on
arbitrary trees instead of d-regular trees, proved by a
potential analysis. The potential functions used in [19]
and [20] are suitable only for monotone systems because
the potential values depend on vertex degrees. And
the potential function used in our previous work [15]
can only approach a weaker uniqueness boundary up
to continuous relaxation, because the definition of the
function involves a continuous version of worst-case
degree. In this paper, we devise a unified potential-
based analysis which adapts to both the irregularity of
the arbitrary tree and the non-monotonicity of general
two-state spin system and give tight correlation decay
results for all two-state anti-ferromagnetic spin systems
on degree-bounded families of graphs and family of all
graphs.

1.1.2 Implications of the main results By solv-
ing the uniqueness condition we can restate our main
results in various threshold forms. Theorem 1.2 cov-
ers as special cases all previous algorithmic results for
two-state anti-ferromagnetic spin systems on general-
structure graphs as well as clears up previously uncov-
ered cases.

In terms of interactions. We can fix the external
field λ and discuss the tractable region of (β, γ). Since
the roles of β and γ are symmetric, we can further fix
one of them and discuss the tractable range of the other.
This formulation was used in [10,15].

Our main result can be restated as follows:

Theorem 1.4. For any β ∈ [0, 1), λ > 0,∆ ≥ 3, there
is a critical threshold γc(β, λ,∆) for the uniqueness
on infinite regular trees up to degree ∆ such that if
γc(β, λ,∆) < γ < 1

β there is an FPTAS for graphs of
maximum degree at most ∆; and in particular, γc =
γc(β, λ,∞) > 1 is an absolute constant such that if
γ ∈ (γc,

1
β ) there is an FPTAS for arbitrary graphs.

This covers as special cases all algorithmic results
in [10] regarding the anti-ferromagnetic systems and
all results in [15], extends the tractable regions in
these previous works, and considers the degree-bounded
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graphs as well.
In terms of external field. Motivated by the

studies of hardcore and anti-ferromagnetic Ising models,
we can fix (β, γ) and discuss the tractable range of
external field.

Due to the symmetric role of β and γ, we may
assume that β ≤ γ. Our main results can be restated
in specific settings as follows:

• Hard constraints (when β = 0): For any

∆, λc(γ,∆) = min1<d<∆
γd+1dd

(d−1)d+1 is a critical

threshold for the uniqueness on infinite regular
trees up to degree ∆ such that if λ < λc(γ,∆) there
exists an FPTAS for graphs of maximum degree at
most ∆.

For γ ≤ 1, the critical threshold equals λc(γ,∆) =
γ∆(∆−1)∆−1

(∆−2)∆ . There is no external field λ > 0

satisfying uniqueness on infinite regular trees of
unbounded degrees. This is consistent with the
hardness result for the hardcore model without
degree bound [4, 22]. One particularly interesting
special case is when γ = 1, in which case the
model is exactly the hardcore model with fugacity

parameter λ, and λc(1,∆) = (∆−1)∆−1

(∆−2)∆
is the

critical fugacity of the uniqueness threshold. This
covers the result of [25].

For γ > 1, in addition to the results for degree-
bounded graphs, there exists an absolute posi-

tive constant λ(γ) = mind>1
γd+1dd

(d−1)d+1 which lower

bounds λ(γ,∆) for all ∆, such that if λ < λ(γ)
there exists an FPTAS for arbitrary graphs. This
is quite different from the case γ ≤ 1 and is not
covered by any previous results.

• Soft constraints (when β > 0): For any ∆,
λc = λc(β, γ,∆) and λ̄c = λ̄c(β, γ,∆) are two
critical thresholds for the uniqueness on infinite
regular trees up to degree ∆ such that if λ ∈
(0, λc) ∪ (λ̄c,∞) there exists an FPTAS for graphs
of maximum degree at most ∆. In particular, if√
βγ > ∆−2

∆ the two ranges overlap, thus for any
external field λ > 0 there exists an FPTAS for
graphs of maximum degree at most ∆.

When β = γ, the spin system becomes the anti-
ferromagnetic Ising model. And λc = 1/λ̄c, thus
if λ ∈ (0, 1/λ̄c) ∪ (λ̄c,∞), i.e. | log λ| > log λ̄c,
there exists an FPTAS for graphs of maximum
degree at most ∆. This covers the result of anti-
ferromagnetic Ising model in [20].

For unbounded maximum degree ∆, if γ ≤ 1, there
is no external field λ > 0 satisfying uniqueness on

infinite regular trees of unbounded degrees. This is
consistent with the hardness results for two-state
spin systems in [10]. If γ > 1, λc = λc(β, γ) is
a critical threshold for uniqueness on all infinite
regular trees such that if λ < λc(β, γ) there exists
an FPTAS for arbitrary graphs.

1.2 Related works The approximation of partition
functions of spin systems has been extensively stud-
ied [3–5,9,11–13,16,24]. In a seminal work [12], Jerrum
and Sinclair devised a fully polynomial-time randomized
approximation scheme (FPRAS) for the ferromagnetic
Ising model. Later in [10], the FPRAS was extended
to all two-state ferromagnetic spin systems by translat-
ing the parameters to the ferromagnetic Ising model.
Also in [10], Goldberg, Jerrum, and Paterson gave
an FPRAS and inapproximability results for two-state
anti-ferromagnetic spin systems on arbitrary graphs. A
gadget based on random regular bipartite graphs was
proposed by Dyer, Frieze, and Jerrum in [4] and was
also analyzed by Mossel, Weitz, and Wormald in [18] to
study the inapproximability on degree-bounded graphs.
It is widely believed that the transition of approxima-
bility of anti-ferromagnetic spin systems is captured by
the phase transition of uniqueness on infinite trees. This
was raised openly as a conjecture in [18]. The conjecture
was proved by Sly in [22] for the hardcore model. This
result was improved by Galanis et al. in [6] to a wide
range of parameters. Very recently, Sly and Sun [23]
proved the hardness of all two-state anti-ferromagnetic
spin systems of non-uniqueness on infinite regular trees.
A same result for anti-ferromagnetic Ising model with-
out external field was independently proved by Galanis,
S̆tefankovic̆, and Vigoda in [7].

The correlation decay technique developed inde-
pendently by Weitz [25] and Bandyopadhyay and
Gamarnik [1] is a powerful tool for devising determinis-
tic fully polynomial-time approximation schemes (FP-
TAS) for partition functions (other important examples
include [2, 8]). In [25], Weitz introduced the concept
of strong spatial mixing and used it to devise FPTAS
for the hardcore model up to the uniqueness thresh-
old. A powerful technique was developed by Restrepo
et al. in [19] which makes use of the specific structure of
graphs for strong spatial mixing. A broader tractable
region than the region of uniqueness is achieved on grid
lattice by exploiting the structure of the graph. The
other most important two-state anti-ferromagnetic spin
system, the anti-ferromagnetic Ising model, was stud-
ied recently by Sinclair, Srivastava, and Thurley in [20],
where a more powerful message-decay method was in-
troduced to analyze the strong spatial mixing and give
FPTAS up to uniqueness threshold.
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In a previous work [15], we gave an FPTAS for two-
state anti-ferromagnetic spin systems without external
field on arbitrary graphs with unbounded degrees, up
to a continuous relaxation of the uniqueness threshold.
The approach used in the current paper was initiated
in [15], however the analysis in [15] cannot separate the
uniqueness up to certain degree, thus fails in dealing
with degree-bounded families of graphs.

2 Definitions and preliminaries

A two-state spin system is described by a graph G =
(V,E). A configuration of the system is one of the
2|V | possible assignments σ : V → {0, 1} of states to
vertices. We also use two colors blue and green to denote
these two states. The weight of a configuration can be
described as a product of contributions of individual

edges and vertices. Let A =

[
A0,0 A0,1

A1,0 A1,1

]
and b =

(b0, b1). The weight of a configuration σ : V → {0, 1} is
given by

w(σ) =
∏

(u,v)∈E

Aσ(u),σ(v)

∏
v∈V

bσ(v).

The Gibbs measure is a probability distribution over all

configurations defined by ρ(σ) = w(σ)
Z(G) . The normal-

ization factor Z(G) =
∑

σ w(σ) is called the partition
function.

We can normalize the contributions of a blue-green

edge and of a green vertex to be 1. So that A =

[
β 1
1 γ

]
for some β, γ ≥ 0, and b = (b0, b1) = (λ, 1) for some
λ > 0. Since the roles of blue and green are symmetric,
we can assume that β ≤ γ without loss of generality.
The three parameters (β, γ, λ) with 0 ≤ β ≤ γ and
λ > 0 completely specify a two-state spin system. A
two-state spin system with β = γ is an Ising model
and a two-state spin system with β = 0, γ = 1 or
symmetrically β = 1, γ = 0 is a hardcore model.

A two-state spin system is called anti-ferromagnetic
if adjacent vertices favor disagreeing spins, i.e. if βγ < 1.
Without loss of generality, we focus on the cases that
β ≤ γ.

Definition 2.1. (β, γ, λ) is anti-ferromagnetic if 0 ≤
β ≤ γ, γ > 0, βγ < 1, and λ > 0.

By the symmetry of β and γ and the triviality of the case
β = γ = 0, this definition is complete for all nontrivial
two-state anti-ferromagnetic systems

2.1 Correlation decay The Gibbs measure defines
a marginal distribution of state for each vertex. Let pv
denote the probability of vertex v to be colored blue.

Let σΛ ∈ {0, 1}Λ be a configuration of Λ ⊂ V . We call
vertices v ∈ Λ fixed vertices, and v ̸∈ Λ free vertices. A
σΛ is feasible if there exists a σ ∈ {0, 1}E with Gibbs
measure ρ(σ) > 0 such that σ is consistent with σΛ on
Λ. We use pσΛ

v to denote the marginal probability of v
to be colored blue conditioning on the configuration of
Λ being fixed as σΛ.

Definition 2.2. A spin system on a family of graphs
is said to be of strong spatial mixing if for any graph
G = (V,E) in the family, any v ∈ V,Λ ⊂ V and any
feasible σΛ, τΛ ∈ {0, 1}Λ,

|pσΛ
v − pτΛv | ≤ exp(−Ω(dist(v, S))),

where S ⊂ Λ is the subset on which σΛ and τΛ differ,
and dist(v, S) is the shortest distance from v to any
vertex in S.

The weak spatial mixing can be defined by mea-
suring the decay with respect to dist(v,Λ) instead of
dist(v, S). The spatial mixing property is also called
correlation decay in Statistical Physics.

Let T be a tree rooted by v. Define RσΛ

T = pσΛ
v /(1−

pσΛ
v ) to be the ratio between the probabilities that the

root v is blue and green, when imposing the condition
σΛ (with the convention that RσΛ

T = ∞ when pσΛ
v = 1).

Suppose that v has d children and Ti is the subtree
rooted by the i-th child. Due to the independence of
subtrees, we have an easy recursion for calculating RσΛ

T :

RσΛ

T = λ

d∏
i=1

βRσΛ

Ti
+ 1

RσΛ

Ti
+ γ

.(2.1)

Let G(V,E) be a graph. Similarly define that RσΛ

G,v =
pσΛ
v /(1−pσΛ

v ). In contrast to the case of tree, there is no
easy recursion for calculating RσΛ

G,v for a general graph
G because of the dependencies caused by cycles. In
[25], a construction called the self-avoiding walk (SAW)
tree was introduced which reduces the computing of
marginal distribution in a general graph to that in a
tree. Specifically, given a graph G(V,E) and a vertex
v ∈ V . The SAW tree TSAW(G, v) is a tree rooted
at v with a new vertex set VSAW (which effectively
enumerates all paths originating from v in G and may
include fixed leaves). Moreover, any vertex sets S ⊂
Λ ⊂ V are mapped to respective SSAW ⊂ ΛSAW ⊂
VSAW and any configuration σΛ ∈ {0, 1}Λ is mapped
to a σΛSAW ∈ {0, 1}ΛSAW . We abuse the notation and
write S = SSAW and σΛ = σΛSAW

if no ambiguity is
caused. Given a graph G(V,E), v ∈ V and S ⊂ V , let
distG(v, S) be the shortest distance in G from v to any
vertex in S.
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Theorem 2.1. (Theorem 3.1 of Weitz [25]) Let
G(V,E) be a graph, v ∈ V , σΛ ∈ {0, 1}Λ a configu-
ration on Λ ⊂ V , and S ⊂ V . Let T = TSAW(G, v).
Then RσΛ

G,v = RσΛ

T . Moreover, it holds that the max-
imum degree of T equals the maximum degree of G,
distG(v, S) = distT (v, S), and any neighborhood of v in
T can be constructed in time proportional to the size of
the neighborhood.

2.2 The uniqueness condition We consider the
uniqueness of Gibbs measure on the infinite (d + 1)-

regular trees T̂d, in which the recursion is given by

fd(x) , λ
(

βx+1
x+γ

)d
due to the symmetric structure of

T̂d.
Let x̂d be the positive fixed point of fd(x), that

is, x̂d = f(x̂d). It is known [14, 17] that the two-

state anti-ferromagnetic spin system on T̂d undergoes a
phase transition at |f ′

d(x̂d)| = 1 with uniqueness when
|f ′

d(x̂d)| ≤ 1. This motivates the following definition.

Definition 2.3. Let (β, γ, λ) be anti-ferromagnetic.
Let x̂d be the positive fixed point of function fd(x) =

λ
(

βx+1
x+γ

)d
. We say that (β, γ, λ) is up-to-∆ unique, if

for all integer 1 ≤ d < ∆,

|f ′
d(x̂d)| =

λd(1− βγ)(βx̂d + 1)d−1

(x̂d + γ)d+1

=
d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ)

< 1.

In particular, (β, γ, λ) is universally unique if it is up-
to-∞ unique.

Being up-to-∆ unique is equivalent to that the
system is of weak spatial mixing on infinite regular
trees up to degree ∆. The uniqueness condition can be
described in various threshold forms, which are given in
Section 3.

The uniqueness condition is defined by requiring
that |f ′

d(x̂d)| < 1. The following lemma states that
|f ′

d(x̂d)| is bounded by an absolute constant as long as
the uniqueness condition holds.

Lemma 2.1. Let (β, γ, λ) be anti-ferromagnetic. If
(β, γ, λ) is up-to-∆ unique then there exists an abso-
lute constant c < 1 which depends only on β, γ, λ and
∆, such that |f ′

d(x̂d)| ≤ c for all 1 ≤ d < ∆.

Proof. The lemma holds trivially for finite ∆. It then
remains to show that in case of universal uniqueness,
|f ′

d(x̂d)| cannot be arbitrarily close to 1 as d grows to

infinity. If (β, γ, λ) is universally unique, due to Lemma
3.1.2, we must have γ > 1. For anti-ferromagnetic

(β, γ, λ), β ≤ 1
γ , thus the fixed point x̂d = λ

(
βx̂d+1
x̂d+γ

)d
≤

λ
γd , therefore |f ′

d(x̂d)| = d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ) ≤ dλ
γd . The

lemma follows.

3 The Uniqueness Thresholds

The following lemma translates the uniqueness condi-
tion into its various threshold forms. The lemma (ex-
cept for item 2) is not used in the proofs of the main
results but is used in the interpretation of the main re-
sults and comparisons to the previous results which are
mostly stated in threshold forms.

Lemma 3.1. Let (β, γ, λ) be anti-ferromagnetic.

1. (β, γ, λ) is up-to-2 unique.

2. If γ ≤ 1, then the uniqueness does not hold on
infinite d-regular tree for all sufficiently large d.

3. If γ > 1, then the uniqueness holds on infinite d-
regular tree for all sufficiently large d.

4. For any ∆, there exists a critical threshold γc =
γc(β, λ,∆) such that (β, γ, λ) is up-to-∆ unique if
and only if γ ∈ (γc,

1
β ). In particular, γc(β, λ,∞) >

1 and γc(β, λ,∞) = γc(β, λ,∆) for some finite ∆.

5. If β = 0, for any ∆, there exists a critical threshold

λc = λc(γ,∆) = min1<d<∆
γd+1dd

(d−1)d+1 such that

(β, γ, λ) is up-to-∆ unique if and only if λ ∈ (0, λc).

6. If
√
βγ > ∆−2

∆ , then for any external field λ,
(β, γ, λ) is up-to-∆ unique.

7. If β > 0, for any ∆ that
√
βγ ≤ ∆−2

∆ , there exist
two critical thresholds λc = λc(β, γ,∆) and λ̄c =
λ̄c(β, γ,∆) such that (β, γ, λ) is up-to-∆ unique if
and only if λ ∈ (0, λc) ∪ (λ̄c,∞). In particular,
when β = γ, it holds that λc · λ̄c = 1, thus (β, β, λ)
is up-to-∆ unique if and only if | log λ| > log λ̄c.

8. If β > 0 and γ > 1, there exists a absolute
positive constant λc = λc(β, γ) such that (β, γ, λ)
is universally unique if and only if λ ∈ (0, λc).

Proof. Let fd(x) = λ
(

βxd+1
xd+γ

)d
and x̂d = fd(x̂d) be the

positive fixed point of fd(x). Then

|fd(x̂d)| =
d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ)
.

Let (β, γ, λ) be anti-ferromagnetic. That is, 0 ≤
β ≤ γ, γ > 0, and βγ < 1, thus β < 1.
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1. It is easy to verify that for βγ < 1, (βx+1)(x+γ)−
(1 − βγ)x > 0 for any positive x > 0. Therefore,

when d = 1, we have |f1(x̂1)| = (1−βγ)x̂1

(βx̂1+1)(x̂1+γ) < 1,

which means that (β, γ, λ) is up-to-2 unique.

2. For all sufficiently large d, it holds that

λβd exp

(
d

(1− βγ)d− 3

)
<

d(1− βγ)− 3

β
, and

λ exp

(
− γd

d(1− βγ)− 3

)
>

γ

d(1− βγ)− 3
.

By contradiction, we suppose that |fd(x̂d)| =
d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ) ≤ 1. Then,

1 ≥ d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ)
≥ d(1− βγ)

βx̂d +
γ
x̂d

+ 2
.

Case.1: x̂d ≥ γ. Then γ
x̂d

≤ 1. Thus,

1 ≥ d(1− βγ)

βx̂d +
γ
x̂d

+ 2
≥ d(1− βγ)

βx̂d + 3
,

which implies that x̂d ≥ d(1−βγ)−3
β , however we

have

x̂d = λ

(
βx̂d + 1

x̂d + γ

)d

≤ λ

(
βx̂d + 1

x̂d

)d

≤ λ

(
β +

β

d(1− βγ)− 3

)d

≤ λβd exp

(
d

(1− βγ)d− 3

)
<

d(1− βγ)− 3

β
,

a contradiction.

Case.2: x̂d < γ. Then βx̂d ≤ βγ < 1. Thus,

1 ≥ d(1− βγ)

βx̂d +
γ
x̂d

+ 2
≥ d(1− βγ)

γ
x̂d

+ 3
,

which implies that x̂d ≤ γ
d(1−βγ)−3 , however we

have

x̂d = λ

(
βx̂d + 1

x̂d + γ

)d

≥ λ

(x̂d + 1)d

≥ λ

(
1 +

γ

d(1− βγ)− 3

)−d

≥ λ · exp
(
− γd

d(1− βγ)− 3

)
>

γ

d(1− βγ)− 3
,

a contradiction.

3. Let γ > 1. The fixed point x̂d = λ
(

βx̂d+1
x̂d+γ

)d
≤ λ

γd ,

and

|f ′
d(x̂d)| =

d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ)
≤ dλ

γd
,

which is strictly less than 1 for all sufficiently large
d. Thus the uniqueness holds on infinite d-regular
tree for all sufficiently large d.

4. We first show that there exists a critical threshold
γc = γc(β, λ,∆) such that (β, γ, λ) is up-to-∆
unique if and only if γ ∈ (γc,

1
β ). It is sufficient to

show that if an anti-ferromagnetic (β, γ, λ) is up-
to-∆ unique then (β, γ′, λ) is up-to-∆ unique for
any γ′ > γ and βγ′ < 1.

Recall that x̂d is the positive fixed point of fd(x) =

λ
(

βx+1
x+γ

)d
. Also let x̂′

d denote the positive solution

to x = λ
(

βx+1
x+γ′

)d
.

We first show that x̂′
d < x̂d. By contradiction, as-

sume that x̂′
d ≥ x̂d. Since for anti-ferromagnetic

(β, γ, λ), the function fd(x) is monotonically de-
creasing in x, we have

x̂d = λ

(
βx̂d + 1

x̂d + γ

)d

≥ λ

(
βx̂′

d + 1

x̂′
d + γ

)d

> λ

(
βx̂′

d + 1

x̂′
d + γ′

)d

= x̂′
d,

a contradiction.

Therefore we have x̂′
d < x̂d, which means that

λ

(
β +

(1− βγ′)

x̂′
d + γ′

)d

< λ

(
β +

(1− βγ)

x̂d + γ

)d

,
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thus
(1− βγ′)

x̂′
d + γ′ <

(1− βγ)

x̂d + γ
.

For x̂′
d < x̂d, it also holds that

x̂′
d

βx̂′
d + 1

=
1

β + 1
x̂′
d

<
1

β + 1
x̂d

=
x̂d

βx̂d + 1
.

Multiplying the above two inequalities together, we
have

d(1− βγ′)x̂′
d

(βx̂′
d + 1)(x̂d + γ′)

<
d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ)
.

Note that these are the absolute derivatives at the
respective fixed points when the parameters are
(β, γ, λ) and (β, γ′, λ). Therefore if (β, γ, λ) is up-
to-∆ unique then (β, γ′, λ) is up-to-∆ unique.

Due to Part 2 of the lemma, if γ ≤ 1, |f ′
d(x̂d)| > 1

for all sufficiently large d, thus γc(β, λ,∞) > 1.
And due to Part 3 of the lemma, for any γ ≥
γc(β, λ,∞) > 1, |f ′

d(x̂d)| is arbitrarily close to 0 as
d grows to infinity, thus γc(β, λ,∞) = γc(β, λ,∆)
for a finite ∆.

5. When β = 0, |f ′
d(x̂d)| = d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ) = dx̂d

x̂d+γ , the

uniqueness condition |f ′
d(x̂d)| < 1 is equivalent to

that x̂d < γ
d−1 (here we assume d > 1 since due

to Part 1 of the lemma, for d = 1 the uniqueness

always holds). Recall that x̂d = λ
(

1
x̂d+γ

)d
. Then

|f ′
d(x̂d)| < 1 if and only if

λ = x̂d(x̂d + γ)d <
γd+1dd

(d− 1)d+1
.

Let λc = λc(γ,∆) = min1<d<∆
γd+1dd

(d−1)d+1 . It holds

that (β, γ, λ) is up-to-∆ unique if and only if λ ∈
(0, λc).

6. We note that |f ′
d(x̂d)| = d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ) is not

monotone in x̂d. It achieves its maximum value

at x̂d =
√

β
γ . Therefore, if for any 1 ≤ d < ∆,

d(1−βγ)x
(βx+1)(x+γ) < 1 for x =

√
β
γ , then (β, γ, λ) is

up-to-∆ unique for any λ. This condition holds
when

√
βγ > d−1

d+1 for all 1 ≤ d < ∆, i.e. when√
βγ > ∆−2

∆ .

7. The following lemma is needed in the proofs of this
part and next part.

Lemma 3.2. Given that 0 < β ≤ γ, βγ < 1, and√
βγ ≤ d−1

d+1 , define

x1(d) =
1

2β

(
− 1− βγ + d(1− βγ)

−
√

(−1− βγ + d(1− βγ))2 − 4βγ
)

x2(d) =
1

2β

(
− 1− βγ + d(1− βγ)

+
√

(−1− βγ + d(1− βγ))2 − 4βγ
)
.

which are the two positive solutions to the equation
d(1−βγ)x

(βx+1)(x+γ) = 1.

Let λi(d) = xi(d)
(

xi(d)+γ
βxi(d)+1

)d
, i = 1, 2.

(a) x1(d) is monotonically decreasing in d; x2(d)
is monotonically increasing in d.

(b) λ2(d) is monotonically increasing in d and
goes to infinity as d grows.

(c) If γ > 1, λ1(d) achieves its minimum value at
a finite d.

Proof. Note that (−1−βγ+d(1−βγ))2−4βγ ≥ 0
if
√
βγ ≤ d−1

d+1 , which means that x1(d) and x2(d)
are well-defined.

(a) It is obvious that x2(d) is increasing in d and is
unbounded as d grows. Note x1(d)x2(d) =

γ
β ,

so x1(d) is decreasing in d and tends to 0 as d
grows to infinity.

(b) For 0 ≤ β ≤ γ, βγ < 1 and
√
βγ ≤ d−1

d+1 ,

we have β ≤
√
βγ ≤ d−1

d+1 < 1 and x+γ
βx+1 is

increasing in x. Moreover, it can be verified
that

x2(d) + γ

βx2(d) + 1
≥ d+ 1

d− 1
· (d− 1)(1− βγ)

(d+ 1)(1− βγ)
= 1.

Since x2(d) is also increasing in d and un-
bounded as d grows, we can conclude that

λ2(d) = x2(d)
(

x2(d)+γ
βx2(d)+1

)d
is increasing in d

and is unbounded as d grows.

(c) It is sufficient to prove that λ1(d) is un-
bounded as d grows. When γ > 1, we have

λ1(d) = x1(d)

(
x1(d) + γ

βx1(d) + 1

)d

≥ x1(d) · γd,

which can be easily verified to be unbounded
as d grows to infinity.
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Recall that
√
βγ ≤ ∆−2

∆ . Let ∆ be the smallest

integer d satisfying that
√
βγ ≤ d−1

d+1 . Then we

have
√
βγ > d−1

d+1 for all 1 ≤ d < ∆ and
√
βγ ≤ d−1

d+1

for all ∆ ≤ d < ∆. According to Part 6 of this
lemma, for all λ > 0, (β, γ, λ) is up-to-∆ unique,
i.e. |f ′

d(x̂d)| < 1 for 1 ≤ d < ∆.

It remains to analyze the |f ′
d(x̂d)| for such d that

∆ ≤ d < ∆, i.e.
√
βγ ≤ d−1

d+1 . By Lemma 3.2, the

equation d(1−βγ)x
(βx+1)(x+γ) = 1 has two positive roots

x1(d) and x2(d) as given in Lemma 3.2.

It then holds for such d that |f ′
d(x̂d)| =

d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ) < 1 if and only if x̂d < x1(d) or

x̂d > x2(d). Note that x
(

x+γ
βx+1

)d
is monotonically

increasing in x for any fixed d, thus x̂d < x1(d) if
and only if

λ = x̂d

(
x̂d + γ

βx̂d + 1

)d

< x1(d)

(
x1(d) + γ

βx1(d) + 1

)d

= λ1(d),

and x̂d > x2(d) if and only if

λ = x̂d

(
x̂d + γ

βx̂d + 1

)d

> x2(d)

(
x2(d) + γ

βx2(d) + 1

)d

= λ2(d).

Therefore, |f ′
d(x̂d)| < 1 if and only if λ < λ1(d) or

λ > λ2(d).

For any ∆ that
√
βγ ≤ ∆−2

∆ , let

λc = λc(β, γ,∆) = min
∆≤d<∆

λ1(d),

λ̄c = λ̄c(β, γ,∆) = max
∆≤d<∆

λ2(d).

It holds that (β, γ, λ) is up-to-∆ unique if and only
if λ ∈ (0, λc) ∪ (λ̄c,∞).

We then show that when β = γ, it holds that
λc · λ̄c = 1. First, it is easy to see that when
β = γ, x1(d)x2(d) = γ

β = 1, thus λ1(d) · λ2(d) =

x1(d)x2(d)
(

x1(d)+γ
βx1(d)+1 · x2(d)+γ

βx2(d)+1

)d
= 1 because β =

γ and x1(d)x2(d) = 1. Due to Part 7b of Lemma
3.2, λ2(d) is monotonically increasing thus λ1(d) =
1/λ2(d) is monotonically decreasing. Therefore,
λ̄c = max∆≤d<∆ λ2(d) = λ2(∆ − 1) and λc =

min∆≤d<∆ λ1(d) = λ1(∆ − 1) and it holds that

λc · λ̄c = λ1(∆−1) ·λ2(∆−1) = 1. Then (β, γ, λ) is
up-to-∆ unique if and only if λ ∈ (0, 1/λ̄c)∪(λ̄c,∞),
i.e. | log λ| > log λ̄c.

8. Let ∆ be the smallest integer d satisfying that√
βγ ≤ d−1

d+1 . Then by Part 7, for any ∆, (β, γ, λ)
is up-to-∆ unique if and only if λ ∈ (0, λc) ∪
(λ̄c,∞), where λc = min∆̄≤d<∆ λ1(d) and λ̄c =
max∆≤d<∆ λ2(d). By Part 7a and Part 7b of
Lemma 3.2, for fixed β, γ, λ2(d) goes to infinity as
d grows. Therefore, λ̄c is unbounded for ∆ = ∞.

If γ > 1, by Part 7c of Lemma 3.2, there is an
absolute positive constant λc = mind≥∆̄ λ1(d) such
that (β, γ, λ) is universally unique if and only if
λ ∈ (0, λc) ∪ (λ̄c,∞) = (0, λc).

4 The strong spatial mixing on general graphs

In this section we prove Theorem 1.1. The necessity of
the uniqueness condition is trivial since strong spatial
mixing on general graphs implies weak spatial mixing
on regular trees. It then remains to prove the following
theorem.

Theorem 4.1. Let (β, γ, λ) be anti-ferromagnetic. For
any finite ∆ ≥ 2 or ∆ = ∞, if (β, γ, λ) is up-to-∆
unique, then the two-state spin system of parameters
(β, γ, λ) exhibits strong spatial mixing on graphs of
maximum degree at most ∆.

Our approach is to prove the strong spatial mixing
on arbitrary trees of maximum degree at most ∆, which
by the self-avoiding walk tree construction implies the
theorem. This is because for general two-state anti-
ferromagnetic spin systems the worst case for strong
spatial mixing among all graphs of maximum degree at
most d may no longer be the d-regular tree. We will
explain this in detail in Section 6.

Given any graph G(V,E) of maximum degree at
most ∆, any configuration σΛ ∈ {0, 1}Λ on Λ ⊂ V
and any S ⊂ Λ, fixing an arbitrary vertex v ∈ V , by
Theorem 2.1, a self-avoiding walk tree T = TSAW(G, v)
can be constructed such that the maximum degree of
T is bounded by ∆, distG(v, S) = distT (v, S) and
RσΛ

G,v = RσΛ

T . Recall that RσΛ

G,v = pσΛ
v /(1 − pσΛ

v ) thus
pσΛ
v = RσΛ

G,v/(1 +RσΛ

G,v). For any σΛ and τΛ,

|pσΛ
v − pτΛv | =

∣∣∣∣∣ RσΛ

G,v

1 +RσΛ

G,v

−
RτΛ

G,v

1 +RτΛ
G,v

∣∣∣∣∣
≤
∣∣∣RσΛ

G,v −RτΛ
G,v

∣∣∣
= |RσΛ

T −RτΛ
T | .

This motivates the following definition.
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Definition 4.1. Let T be a tree rooted by vertex v,
τΛ ∈ {0, 1}Λ be a configuration on Λ ⊂ V and S ⊆ Λ
be a vertex set. Define Rv and δv as that Rv ≤ RτΛ

T ≤
Rv + δv for all σΛ ∈ {0, 1}Λ which differ from τΛ only
on S.

It is then sufficient to prove Theorem 4.1 by construct-
ing such Rv and δv for T = TSAW(G, v) and showing
that δv ≤ exp(−Ω(dist(v, S))).

Let T be a tree rooted by v, who has d children
v1, . . . , vd, and Ti be the subtree rooted by vi. It holds
that

RσΛ

T = f
(
RσΛ

T1
, . . . , RσΛ

Td

)
, λ

d∏
i=1

βRσΛ

Ti
+ 1

RσΛ

Ti
+ γ

.

The lower and upper bounds Rv and Rv + δv can be
recursively constructed as follows. The base cases are:
(1) v ∈ S, in which case Rv = 0 and δv = ∞; and
(2) v ∈ Λ \ S, i.e. v is fixed to be the same color
in all σΛ, in which case δv = 0 and Rv = ∞ (or
Rv = 0) if v is fixed to be blue (or green). For v ̸∈ Λ,
since f(R1, . . . , Rd) is monotonically decreasing for anti-
ferromagnetic (β, γ, λ),

Rv = f(Rv1 + δv1 , ..., Rvd + δvd),

Rv + δv = f(Rv1 , ..., Rvd
),

where Rvi and Rvi+δvi are the corresponding lower and
upper bounds for RσΛ

Ti
, 1 ≤ i ≤ d. In particular, when

d = 0 the empty product equals 1 by convention, thus
Rv = Rv + δv = λ, which is consistent with the case
that v is a free vertex having no children.

By the monotonicity of f(R1, . . . , Rd), it is easy to
check that the Rv and Rv+δv constructed above satisfy
the requirement of Definition 4.1. Our goal is to show
that δv decays exponentially in depth of recursion when
the uniqueness holds. A straightforward approach is
trying to prove that δ contracts at a constant rate in
each recursion step. But this does not have to be true to
guarantee the exponential decay. Indeed there are cases
that the error does not decay in single steps but decay
in a long run. To overcome this, we use a potential Φ to
amortize the contraction and show that δ · Φ contracts
at a constant rate. We choose the potential function to
be

Φ(R) =
1√

R(βR+ 1)(R+ γ)
.

We are analyzing the decay on an arbitrary tree with
irregular degrees. In order to adapt this irregularity,
the potential function cannot have d as an input, but
only caries the information regarding the distribution
at the current vertex, yet it has to be able to provide

correct compensation to the step-wise decay at any
state of R and for all spin systems satisfying sufficient
uniqueness. A heuristic procedure which leads us to this
good potential function is discussed in Appendix A.

Let φ(R) be a monotone function satisfying that
φ′(R) = Φ(R). We define that

ϵv , φ(Rv + δv)− φ(Rv),

and accordingly, ϵvi , φ(Rvi + δvi)−φ(Rvi), 1 ≤ i ≤ d.
We define a function α(d;x1, ..., xd) as follows:

α(d;x1, ..., xd)

,
(1− βγ)

(
λ
∏d

i=1
βxi+1
xi+γ

) 1
2

(
βλ
∏d

i=1
βxi+1
xi+γ + 1

) 1
2
(
λ
∏d

i=1
βxi+1
xi+γ + γ

) 1
2

·
d∑

i=1

x
1
2
i

(βxi + 1)
1
2 (xi + γ)

1
2

.

The following lemma is obtained from applying the
Mean Value Theorem. Similar routines were previously
used in [15,19].

Lemma 4.1. The followings hold for ϵv.

1. (relation to δv) ϵv = δv · Φ(R̃) for some R̃ ∈
[Rv, Rv + δv].

2. (absolute bound) Assuming that γ > 1 or the
maximum degree of T is bounded by a constant, if
v ̸∈ Λ then Rv + δv = O(1) and if vi ̸∈ S for all
1 ≤ i ≤ d then ϵv = O(1).

3. (stepwise contraction) There exist R̃i ∈ [Rvi , Rvi +
δvi ], 1 ≤ i ≤ d, such that

ϵv ≤ α(d; R̃1, . . . , R̃d) · max
1≤i≤d

{ϵvi}.

Proof. 1. Due to the Mean Value Theorem, there
exists an R̃ ∈ [Rv, Rv + δv] such that

ϵv = φ(Rv + δv)− φ(Rv) = φ′(R̃) · δv = Φ(R̃) · δv.

2. Suppose that each vertex has at most k children.
Then due to the assumption either k is bounded or
γ > 1.

If v ̸∈ Λ, then δv ≤ Rv + δv = f(Rv1 , . . . , Rvd
) ≤

f(0, . . . , 0) = λ
γd , where 0 ≤ d ≤ k. If γ > 1,

then Rv + δv ≤ λ = O(1); and if k is finite, then
Rv + δv ≤ max{ λ

γk , λ} = O(1).
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Due to the Mean Value Theorem, there exist R̃i ∈
[Rvi , Rvi + δvi ], 1 ≤ i ≤ d, such that

ϵv = φ (f(Rv1 , . . . , Rvd
))

− φ (f(Rv1 + δv1 , . . . , Rvd
+ δvd

))

= −∇φ
(
f(R̃1, . . . , R̃d)

)
· (δv1 , . . . , δvd

)

=
(1− βγ) ·

(
f(R̃1, . . . , R̃d)

) 1
2

(
βf(R̃1, . . . , R̃d) + 1

) 1
2
(
f(R̃1, . . . , R̃d) + γ

) 1
2

·
d∑

i=1

δvi

(βR̃i + 1)(R̃i + γ)

≤

√
f(0, . . . , 0)

γ
·

d∑
i=1

δvi
γ

.

If vi ̸∈ S for all vi, then due to the above argument,
δvi ≤ λ

γdi
for free vi, where 0 ≤ di ≤ k is the

number of children of vi; and trivially δvi = 0

for fixed vi. Therefore, ϵv ≤
√

λ
γd+1

∑d
i=1

λ
γdi+1 ≤

λ
3
2 dγ− d+3

2 · max
{

1
γk , 1

}
. If γ > 1, then it is easy

to see that dγ− d+3
2 is bounded by a constant, thus

it holds that ϵv = O(1); if k is bounded, then d ≤ k
is also bounded, thus clearly ϵv = O(1).

3. We then analyze the stepwise contraction of ϵv.
Define that yv = φ(Rv) and accordingly yvi =
φ(Rvi), 1 ≤ i ≤ d. Then yv + ϵv = φ(Rv + δv)
and yvi + ϵvi = φ(Rvi + δvi), 1 ≤ i ≤ d. We have

yv = φ(f(φ−1(yv1 + ϵv1), ..., φ
−1(yvd + ϵvd))),

yv + ϵv = φ(f(φ−1(yv1), ..., φ
−1(yvd

))).

Apply the Mean Value Theorem. There exist ỹi ∈
[yvi , yvi + ϵvi ] and corresponding R̃i ∈ [Rvi , Rvi +

δvi ] satisfying ỹi = φ(R̃i), 1 ≤ i ≤ d, such that

ϵv = φ(f(φ−1(yv1), ..., φ
−1(yvd)))

− φ(f(Φ−1(yv1 + ϵv1), ..., φ
−1(yvd + ϵvd

)))

= −∇φ(f(φ−1(ỹ1), ..., φ
−1(ỹd))) · (ϵv1 , ..., ϵvd

)

= −Φ(f(R̃1, ..., R̃d)) ·
d∑

i=1

∂f

∂Ri

1

Φ(R̃i)
· ϵi

=
(1− βγ)

(
λ
∏d

i=1
βR̃i+1

R̃i+γ

) 1
2

(
βλ
∏d

i=1
βR̃i+1

R̃i+γ
+ 1
) 1

2
(
λ
∏d

i=1
βR̃i+1

R̃i+γ
+ γ
) 1

2

·
d∑

i=1

ϵvi
R̃i

1
2

(βR̃i + 1)
1
2 (R̃i + γ)

1
2

≤ α(d; R̃1, . . . , R̃d) · max
1≤i≤d

{ϵvi}.

To prove the strong spatial mixing, we first relate δv
to ϵv by Item 1 of Lemma 4.1, and then apply induction
on the depth in T , with Item 2 of Lemma 4.1 as basis
and Item 3 of Lemma 4.1 as induction step. We then
need to bound the contraction rate α(d;x1, ..., xd). Note

that z
(βz+1)(z+γ) ≤

(
1 +

√
βγ
)−2 ≤ 1 for z ∈ [0,∞),

thus it holds unconditionally for all xi ∈ [0,∞), 1 ≤ i ≤
d, that

α(d;x1, ..., xd) ≤ d,(4.2)

α(d;x1, ..., xd) ≤ d ·

√
λ

γd+1
.(4.3)

With the uniqueness, the following much tighter con-
traction bound can be proved.

Lemma 4.2. Let (β, γ, λ) be anti-ferromagnetic. If
(β, γ, λ) is up-to-∆ unique, then there exists a con-
stant α < 1 such that for any integer 1 ≤ d < ∆
and any x1, ..., xd ∈ [0,+∞), 1 ≤ i ≤ d, it holds that
α(d;x1, . . . , xd) ≤ α.

This lemma is the technical core of our analysis.
It crucially relies on the choice of potential function.
Theorem 4.1 can be implied by this lemma. The rest
of this section is devoted to the proof of this lemma.
Given that (β, γ, λ) is up-to-∆ unique, there exists an
absolute constant α < 1 such that α(d;x1, . . . , xd) ≤ α
for any 1 ≤ d < ∆ and x1, . . . , xd ≥ 0.

We define the symmetric version of α(d;x1, . . . , xd):

αd(x) , α(d;x, . . . , x︸ ︷︷ ︸
d

)

= d(1− βγ) ·
√

x

(βx+ 1)(x+ γ)

·

√√√√√√√ λ
(

βx+1
x+γ

)d
(
βλ
(

βx+1
x+γ

)d
+ 1

)(
λ
(

βx+1
x+γ

)d
+ γ

)
The following lemma shows that the symmetric case
dominates the maximum of α(d;x1, ..., xd) by using
the inequalities of Cauchy-Schwarz and arithmetic and
geometric means.

Lemma 4.3. Let (β, γ, λ) be anti-ferromagnetic. Then
for any integer d and any x1, ..., xd ∈ [0,+∞), there
exists an x̄ ∈ [0,+∞) such that α(d;x1, ..., xd) ≤
α(d, x̄).

Proof. Let zi =
βxi+1
xi+γ . Then zi ∈ (β, 1

γ ] and xi =
1−γzi
zi−β .
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Express α(d;x1, ..., xd) in terms of zi:

α(d;x1, ..., xd) =

(
λ
∏d

i=1 zi

) 1
2

(
βλ
∏d

i=1 zi + 1
) 1

2
(
λ
∏d

i=1 zi + γ
) 1

2

·
d∑

i=1

(z−1
i − γ)

1
2 (zi − β)

1
2 .

Due to Cauchy-Schwarz inequality,

d∑
i=1

(z−1
i − γ)

1
2 (zi − β)

1
2

≤ d

(
1

d

d∑
i=1

(z−1
i − γ)(zi − β)

) 1
2

= d

(
1 + βγ − 1

d

d∑
i=1

(ziγ + βz−1
i )

) 1
2

.

Due to the inequality of arithmetic and geometric
means,

d

(
1 + βγ − 1

d

d∑
i=1

(ziγ + βz−1
i )

) 1
2

≤ d

1 + βγ − γ

(
d∏

i=1

zi

) 1
d

− β

(
d∏

i=1

zi

)− 1
d


1
2

.

Let z̄ =
(∏d

i=1 zi

) 1
d

. Then combining the above

calculations,

α(d;x1, ..., xd) ≤
(λz̄d)

1
2 · d(1 + βγ − γz̄ − βz̄−1)

1
2

(βλz̄d + 1)
1
2 (λz̄d + γ)

1
2

= d ·

√
λz̄d(z̄−1 − γ)(z̄ − β)

(βλz̄d + 1)(λz̄d + γ)
.

Let x̄ be such that βx̄+1
x̄+γ = z̄. Then x̄ ∈ [0,+∞)

and by substituting βx̄+1
x̄+γ for z̄, we have

α(d;x1, ..., xd)

≤ d(1− βγ) ·
√

x̄

(βx̄+ 1)(x̄+ γ)

·

√√√√√√√ λ
(

βx̄+1
x̄+γ

)d
(
βλ
(

βx̄+1
x̄+γ

)d
+ 1

)(
λ
(

βx̄+1
x̄+γ

)d
+ γ

)
= αd(x̄).

Lemma 4.4. Let (β, γ, λ) be anti-ferromagnetic. If
(β, γ, λ) is up-to-∆ unique, then there exists a constant
α < 1 such that for any integer 1 ≤ d < ∆, it holds that
αd(x) ≤ α for all x ≥ 0.

Proof. Fix d to be any positive integer. We characterize
the x at which αd(x) achieves its maximum. We denote

that fd(x) = λ
(

βx+1
x+γ

)d
. Taking derivative of αd(x)

with respect to x, we get that

α′
d(x) = d(1− βγ) · G′(x)

2
√
G(x)

,

where G(x) = xfd(x)
(βfd(x)+1)(fd(x)+γ)(βx+1)(x+γ) , whose

derivative is

G′(x) =
fd(x) · d(1− βγ)x

(βfd(x) + 1)(fd(x) + γ)(βx+ 1)2(x+ γ)2

·
(

γ − βx2

d(1− βγ)x
− γ − βfd(x)

2

(βfd(x) + 1)(fd(x) + γ)

)
.

As x ranges over [0,∞), the function γ−βx2

d(1−βγ)x is strictly

decreasing in x and ranges from +∞ to −∞, and the

function γ−βfd(x)
2

(βfd(x)+1)(fd(x)+γ) is strictly increasing in x

and has a bounded range. Thus, the equation

γ − βx2

d(1− βγ)x
=

γ − βfd(x)
2

(βfd(x) + 1) (fd(x) + γ)
.(4.4)

has unique solution in (0,∞), denoted by xd. Moreover,
it holds that

G′(x)


> 0 if 0 ≤ x < xd,

= 0 if x = xd,

< 0 if x > xd.

(4.5)

The same also holds for α′
d(x). Thus, for any fixed d,

αd(x) achieves its maximum when x = xd.
We define that

α̃d(x) ,
√
d(1− βγ) · (γ − βx2)

(βx+ 1)(x+ γ)
· fd(x)

(γ − βfd(x)2)
.

Therefore, for all x ≥ 0,

αd(x) ≤ αd(xd)

= d(1− βγ)

√
x

(βxd + 1)(xd + γ)

·

√
fd(xd)

(βfd(xd) + 1) (fd(xd) + γ)

= α̃d(xd),(4.6)
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where the last equation is obtained by substituting
(βfd(xd) + 1) (fd(xd) + γ) according to (4.4).

Let x̂d be the positive fixed point of fd(x), that is,
x̂d = fd(x̂d). With the assumption that (β, γ, λ) is up-
to-∆ unique, we claim that for any integral 1 ≤ d < ∆,

α̃d(xd) ≤ α̃d(x̂d)(4.7)

Case 1: x̂d ≤ xd. Due to (4.5), we have G′(x̂d) ≥ 0.
Note that

G′(x̂d) =
d(1− βγ)(γ − βx̂2

d)x̂
2
d

(βx̂d + 1)3(x̂d + γ)3

·
(

1

d(1− βγ)x̂d
− 1

(βx̂d + 1)(x̂d + γ)

)
.

Because of the uniqueness, we have |f ′
d(x̂d)| =

d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ) < 1, thus 1
d(1−βγ)x̂d

− 1
(βx̂d+1)(x̂d+γ) >

0. Therefore G′(x̂d) ≥ 0 implies that γ − βx̂2
d ≥ 0.

Since fd(x) is monotonically decreasing in x and x̂d

is its fixed point, we have

γ − βfd(xd)
2 ≥ γ − βfd(x̂d)

2

= γ − βx̂2
d

≥ 0.

Since xd satisfies (4.4), γ − βx2
d and γ − βfd(xd)

2

must be simultaneously positive or negative, thus it

also holds that γ−βx2
d ≥ 0. Then both (γ−βx2)

(βx+1)(x+γ)

and fd(x)
(γ−βfd(x)2)

are positive and monotonically

decreasing in x ∈ [x̂d, xd]. Therefore, α̃d(xd) ≤
α̃d(x̂d).

Case 2: x̂d > xd. By the same argument as
above, it holds that γ − βfd(x̂d)

2 = γ − βx̂2
d < 0,

γ − βfd(xd)
2 < 0, and γ − βx2

d < 0. Thus

both (γ−βx2)
(βx+1)(x+γ) and fd(x)

(γ−βfd(x)2)
are negative and

monotonically decreasing in x ∈ [xd, x̂d], hence
their product is positive and increasing in x ∈
[xd, x̂d]. Therefore, α̃d(xd) ≤ α̃d(x̂d).

Combining (4.6) and (4.7), we have

αd(x) ≤ αd(xd) = α̃d(xd) ≤ α̃d(x̂d)

=

√
d(1− βγ)x̂d

(βx̂d + 1)(x̂d + γ)
=
√

|f ′
d(x̂d)|.

And due to Lemma 2.1, if (β, γ, λ) is up-to-∆ unique
then there exists a constant α < 1 such that |f ′

d(x̂d)| <
α for all integer 1 ≤ d < ∆. Lemma 4.4 is proved.

Lemma 4.2 is proved by combining Lemma 4.3 and
Lemma 4.4.

Proof of Theorem 4.1. Let T = TSAW(G, v) for a
G whose maximum degree is at most ∆. Then the
maximum degree of T is at most ∆, thus the root v
has at most ∆ children in T , and every other vertex in
T has less than ∆ children. We recursively construct
Ru, δu and ϵu for every subtree in T .

Let t = dist(v, S). By repeatedly applying Item
3 of Lemma 4.1, without loss of generality, we have a
path u1u2 · · ·ut−2 in T with u1 = v such that ϵuj ≤
α(dj ;x1, . . . , xdj )·ϵuj+1 for j = 1, 2, . . . , t−3, where dj is
the number of children of uj and xi ∈ [0,∞), 1 ≤ i ≤ dj .

Note that d1 ≤ ∆, and dj < ∆ for all other
j. Assume that (β, γ, λ) is up-to-∆ unique. If ∆ is
bounded, then by Lemma 4.2 there exists a constant
α < 1, such that ϵuj ≤ α · ϵuj+1 for 2 ≤ j ≤ t − 3, and
ϵv ≤ d1 · ϵu2 ≤ ∆ · ϵ2 due to (4.2); and if ∆ = ∞, then
by Lemma 4.2, ϵuj ≤ α · ϵuj+1 for all 1 ≤ j ≤ t − 3. In
both cases we have ϵv = O(αt · ϵut−2).

Due to Item 1 of Lemma 4.1, δv = ϵv
Φ(R̃)

=

O
(

1

Φ(R̃)
· αtϵut−2

)
for some R̃ ∈ [Rv, Rv + δv]. We then

bound Φ(R̃) and ϵut−2 . Due to Item 2 of Lemma 3.1,
the fact that (β, γ, λ) is up-to-∆ unique implies that
either ∆ is bounded or γ > 1. Note that v must be free
or the theorem is trivial to prove, and none of ut−2’s
children is in S because dist(v, S) = t. Thus by Item 2

of Lemma 4.1, ϵut−2 = O(1) and R̃ ≤ Rv + δv = O(1),

which implies that Φ(R̃) = 1√
R̃(βR̃+1)(R̃+γ)

= Ω(1).

In conclusion, if (β, γ, λ) is up-to-∆ unique, there
exists a constant α < 1, such that δv = O (αt). As
discussed in the beginning of section 4, this proves
Theorem 4.1.

Strong spatial mixing on regular trees. As a
byproduct of our analysis, we prove a strong spatial
mixing theorem for regular trees. When the graphs G
itself is a regular tree. All vertices (except the root) has
the same arity. And all ds (excerpt the one of the root)
that appear in the proof are the same and equal that
arity. Then the condition that the uniqueness holds
on all infinite regular trees of degree up to ∆ can be
replaced by the uniqueness on infinite ∆-regular tree.

Theorem 4.2. For two-state anti-ferromagnetic spin
systems, on any infinite ∆-regular tree the uniqueness
implies the strong spatial mixing.

The same result can be obtained by combining the
same theorem for the hardcore model [25] and anti-
ferromagnetic Ising model [20] and translating the pa-
rameters of general two-state anti-ferromagnetic spin
systems to these models (as discussed in [20,23]). How-
ever, unlike the hardcore and the anti-ferromagnetic
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Ising models, for general two-state anti-ferromagnetic
spin systems Theorem 4.2 itself is not sufficient to im-
ply the strong spatial mixing on graphs of maximum
degree at most ∆. This is discussed in Section 6.

5 Algorithmic implications

In this section we prove Theorem 1.2. That is, if an
anti-ferromagnetic (β, γ, λ) is up-to-∆ unique then there
exists an FPTAS for the partition function Z(G) for
any graph G of maximum degree at most ∆, and in
particular the universal uniqueness implies an FPTAS
for arbitrary graph G.

It is well-known that Z(G) can be computed from
pσΛ
v by the following standard procedure. Let v1, . . . , vn

enumerate the vertices in G. For 0 ≤ i ≤ n, let σi be
the configuration fixing the first i vertices v1, . . . , vi as
follows: σi(vj) = σi−1(vj) for 1 ≤ j ≤ i−1 and σi(vi) is

fixed so that pi , Pr[σi(vi) | σi−1] ≥ 1/3. In particular,
σn ∈ {0, 1}V is a configuration of V . It holds for the
Gibbs measure of σn that ρ(σn) = p1p2 · · · pn as well

as that ρ(σn) = w(σn)
Z(G) , thus Z(G) = w(σn)

p1p2···pn
, where

the weight w(σn) =
∏

(u,v)∈E Aσn(u),σn(v)

∏
v∈V bσn(v)

can be computed precisely for any particular σn in time
polynomial in n. Note that pi equals to either p

σi−1
vi

or 1 − p
σi−1
vi . Therefore, if pσΛ

v can be approximated
within an additive error ϵ in time polynomial in n and 1

ϵ ,
then the configurations σi can be efficiently constructed
such that all pi are bounded away from 0, thus the
product p1p2 · · · pn can be approximated within a factor
of (1±nϵ) in time polynomial in n and 1

ϵ , which implies
an FPTAS for Z(G).

Bounded degree graphs. Let G be a graph whose
maximum degree is at most ∆ and v be any vertex.
A self-avoiding walk tree T = TSAW(G, v) can be
constructed so that RσΛ

G,v = RσΛ

T . We can use the
recursive procedure described in Section 4 to compute
the upper and lower bounds of RσΛ

T , with the setting
that for all the vertices more than t steps away from
the root v, the trivial bounds 0 ≤ RσΛ

T ≤ ∞ is used.
Then the proof of Theorem 4.1 shows that the recursive
procedure returns R0 and R1 such that R0 ≤ RσΛ

T ≤
R1, and R1 − R0 = O(αt) for some constant α < 1
assuming that (β, γ, λ) is up-to-∆ unique. Note that

RσΛ

T = RσΛ

G,v = p
σΛ
v

1−p
σΛ
v

. Let p0 = R0

R0+1 and p1 = R1

R1+1 .

Then p0 ≤ pσΛ
v ≤ p1 and

p1 − p0 =
R1

R1 + 1
− R0

R0 + 1
≤ R1 −R0 = O(αt).

(5.8)

The recursive procedure runs in time O(∆t) since it only
needs to construct the first t levels of the self-avoiding

walk tree. If ∆ is bounded, by setting t = logα ϵ, this
gives an algorithm which approximates pσΛ

v within an
additive error O(ϵ) in time polynomial in n and 1

ϵ , which
implies an FPTAS for Z(G).

Arbitrary graphs. Let G be an arbitrary graph and
v be any vertex. Let T = TSAW(G, v). We use the
method of Computationally Efficient Correlation Decay
introduced in [15] to deal with the unbounded degrees.
Intuitively, using this method we observe correlation
decay in a refined metric instead of graph distance such
that in this new metric a neighborhood of moderate size
is sufficient to guarantee desirable correlation decay.

Similarly, we use the recursive procedure described
in Section 4 to compute the upper and lower bounds of
RσΛ

T , but this time the termination condition relies on
a new depth defined as follows.

Definition 5.1. Let T be a rooted tree and M > 1 be
a constant. For any vertex v in T , define the M -based
depth of v, denoted ℓM (v), as such: ℓM (v) = 0 if v is
the root, and ℓM (v) = ℓM (u)+ ⌈logM (d+1)⌉ if v is one
of the d children of u.

Let M > 1 to be fixed. Denote by B(ℓ) the set of
all vertices with M -based depth < ℓ along with their
children and grandchildren in T . It can be verified by
induction that |B(ℓ)| ≤ n2M ℓ. The recursion is applied
to estimate the RσΛ

T when the current v ∈ B(ℓ) until
v is no longer in B(ℓ) in which case the trivial bounds
0 ≤ RσΛ

T ≤ ∞ is used.
Let ϵv be defined as in Section 4. Repeatedly ap-

plying Item 3 of Lemma 4.1, without loss of generality,
we have a path u1u2 · · ·uk in T from the root u1 = v
to a uk with ℓM (uk) ≥ ℓ and ℓM (uk−1) < ℓ, such that
ϵuj ≤ α(dj ;x1, . . . , xdj ) · ϵuj+1 for j = 1, 2, . . . , k, where
dj is the number of children of uj and xi ∈ [0,∞),
1 ≤ i ≤ dj . The key to overcome the explosion caused
by unbounded degrees is to observe that the contraction
α(d;x1, . . . , xd) decreases dramatically as the degree d
grows.

Lemma 5.1. Let (β, γ, λ) be anti-ferromagnetic. If
(β, γ, λ) satisfies the universal uniqueness, then there
exist constants α < 1 and M > 1 such that for any in-
teger d ≥ 1, and any xi ∈ [0,∞), 1 ≤ i ≤ d, it holds
that α(d;x1, ..., xd) ≤ α⌈logM (d+1)⌉.

Proof. Assume the universal uniqueness of (β, γ, λ).
Due to Lemma 4.2, there exists a constant α < 1
such that α(d;x1, . . . , xd) ≤ α. By Item 2 of Lemma
3.1, the universal uniqueness implies that γ > 1, thus

there exists a constant M > 1 such that d ·
√

λ
γd+1 ≤

α⌈logM (d+1)⌉ for all d ≥ M . Due to (4.3), it holds
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that α(d;x1, . . . , xd) ≤ d ·
√

λ
γd+1 ≤ α⌈logM (d+1)⌉ for

all d ≥ M . Note that α(d;x1, . . . , xd) ≤ α means that
α(d;x1, ..., xd) ≤ α⌈logM (d+1)⌉ for d < M . Therefore,
α(d;x1, ..., xd) ≤ α⌈logM (d+1)⌉ for all d.

By Lemma 5.1, there exist constants α < 1 and
M > 1 such that

ϵv ≤ ϵuk
·

k∏
j=1

α⌈logM (dj+1)⌉

≤ ϵuk
· α

∑k
j=1⌈logM (dj+1)⌉

= ϵuk
· αℓM (uk)

≤ ϵuk
· αℓ.

With the notation used in Section 4, S is the comple-
ment of B(ℓ). Note that all uk’s children are in B(ℓ)
thus none of them are in S, and by Item 2 of Lemma
3.1 the universal uniqueness implies that γ > 1. Thus
by Item 2 of Lemma 4.1 it holds that ϵuk

= O(1). There-
fore, ϵv ≤ ϵuk

· αℓ = O(αℓ).
Let δv = R1 − R0, where R0 and R1 are the

bounds returned by the recursive procedure such that
R0 ≤ RσΛ

T ≤ R1. By the same analysis as in Section
4, δv = ϵv

Φ(R̃)
= O(ϵv) = O(αℓ). Then by (5.8),

the marginal probability pσΛ
v is approximated within

an additive error of O(αℓ). The running time of the
recursion is O(nB(ℓ)) = O(n3M ℓ). By setting ℓ =
logα ϵ, we have an algorithm which approximates pσΛ

v

within an additive error of O(ϵ) in time polynomial in n
and 1

ϵ , which implies an FPTAS for Z(G) for arbitrary
graph G.

Heterogeneous spin systems. Our analysis in last
and this sections actually holds for heterogeneous spin
systems which allow that each vertex v has a distinct
constant external field λv > 0.

Theorem 5.1. For a two-state anti-ferromagnetic het-
erogeneous spin system with parameters β, γ, and ex-
ternal field λv at each vertex v, for any finite ∆ ≥ 2 or
∆ = ∞, if for all v the (β, γ, λv) is up-to-∆ unique then
the spin system exhibits strong spatial mixing and has
FPTAS on graphs of maximum degree at most ∆.

6 Non-monotonicity of general two-state spin
system

In this section, we prove the following theorem, which
shows a non-monotone behavior of the strong spatial
mixing of general two-state spin systems.

Theorem 6.1. There exist two-state anti-
ferromagnetic spin systems which exhibit strong

spatial mixing on infinite d-regular tree but do not
exhibit strong spatial mixing on all graphs of maximum
degree at most d.

In a seminal work [25], Weitz proved that for the
hardcore model the strong spatial mixing on an infinite
d-regular tree implies the strong spatial mixing on
graphs of maximum degree at most d (Theorem 2.3
in [25]). He further remarked that the same implication
holds for all two-state spin systems. That is,

for any two-state spin system, strong spatial
mixing on an infinite d-regular tree implies the
strong spatial mixing on graphs of maximum
degree at most d.

This claim played important roles in current under-
standing of correlation decay in two-state spin systems
as well as devising FPTAS for such systems. An algo-
rithmic form of this claim was cited in [20] as a theorem
for all two-state spin systems (Theorem 2.8 in [20]) and
was proved for the anti-ferromagnetic Ising model. It
was raised as a conjecture in [21] whether this claim
holds for multi-state spin systems.

Here we clarify that this claim holds only for the
two-state spin systems under limited settings but does
not hold for all general two-state spin systems. This
disproves the conjecture in [21] and shows that the
common belief that the d-regular tree represents the
worst case for strong spatial mixing among all graphs
of maximum degree at most d cannot be generalized
to general two-state spin systems. We first describe a
region that the claim is true.

Lemma 6.1. For 0 ≤ β, γ ≤ 1, the strong spatial
mixing on infinite d-regular tree implies the strong
spatial mixing on trees of maximum degree at most d.

Proof. Given a rooted tree of maximum degree at most
d, for each vertex of k children with k < d − 1, we can
attach d−1−k dummy children with fixed (distributions
of) spin states. This is the method used in [25] and [20]:
for the hardcore model the dummy children are fixed
to be unoccupied and for the anti-ferromagnetic Ising
model the dummy children are of uniform distributions
over spin states. In both cases, the dummy children
have no effect on their parent. In general, we fix
the distribution to be (p0, p1) at each dummy child
satisfying

p0 + p1 = 1,

βp0 + p1 = p0 + γp1.

When 0 ≤ β, γ ≤ 1, this system has solutions in
0 ≤ p0, p1 ≤ 1. With the ratio Ri at the i-th child,
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1 ≤ i ≤ k, and Ri = p0/p1 for the dummy children
k < i ≤ d − 1, the ratio at the parent is given by the
recursion

λ
d−1∏
i=1

βRi + 1

Ri + γ
= λ

k∏
i=1

βRi + 1

Ri + γ
,

which is identical to the original quantity.

Due to the self-avoiding walk tree construction
(Theorem 2.1), it holds that for 0 ≤ β, γ ≤ 1, strong
spatial mixing on infinite d-regular tree implies the
strong spatial mixing and the FPTAS on graphs of
maximum degree at most d.

For 0 ≤ β, γ ≤ 1, the spin system shows the
following monotone property: the uniqueness on infinite
d-regular tree implies the uniqueness on all infinite
regular trees of smaller degree. This can be verified by
the following reasoning: due to Theorem 4.2, on infinite
d-regular tree the uniqueness implies the strong spatial
mixing, which for 0 ≤ β, γ ≤ 1, implies the strong
spatial mixing (including the uniqueness) on all infinite
regular trees of smaller degree.

There exist two-state anti-ferromagnetic spin sys-
tems which are non-monotone. We can choose anti-
ferromagnetic (β, γ, λ) satisfying that γ > 1 and λ >
λc(β, γ), where λc(β, γ) is the critical threshold for uni-
versal uniqueness given in Item 8 of Lemma 3.1. Accord-
ing to Item 3 of Lemma 3.1, since γ > 1 the uniqueness
holds on d-regular trees for all sufficiently large d. On
the other hand, according to Item 8 of Lemma 3.1, since
λ > λc(β, γ), there exists a finite d

′ such that the system
is non-unique on d′-regular tree.

For such non-monotone systems, due to Theorem
4.2, the uniqueness implies the strong spatial mixing
on d-regular tree for sufficiently large d, but the strong
spatial mixing does not hold on a regular tree of
smaller degree (because of the non-uniqueness on the
smaller tree). Therefore the implication between the
strong spatial mixing on d-regular tree and on graphs
of maximum degree at most d does not hold for general
two-state spin systems.
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A Heuristics for finding good potential
functions

Perhaps the most mysterious step in our proof is the
choice of the potential function Φ(x) = 1√

x(βx+1)(x+γ)
.

As in many cases where potential analysis is applied,
there is no standard routine for searching for a suitable
potential function. On the other hand, it is quite
unlikely that we can just guess such a fairly complicated
formula without any hints. Here we present a heuristic
approach which leads us to the discovery of a good
potential function. This part is not rigorous and
logically unnecessary for the soundness of our result.
Nevertheless, this heuristic approach is general and
interesting enough and may find its applications in other
scenarios, thus deserves an exposition here.

The heuristics consists of three steps:

1. Find a necessary condition for the potential func-
tion, which is an equation related to the potential
function at one point.

2. (heuristic step) Enhance the condition by assuming
that the equation holds for the whole range of the
variable, which gives us a differential equation.

3. Solve the differential equation and get a potential
function.

We first assume that the system is at the boundary
of uniqueness. This means that d is the critical degree

and f ′(x̂) = −1, where f(x) = λ
(

βx+1
x+γ

)d
and x̂ = f(x̂)

is the positive fixed point.
We have the following identities:

x̂ = λ

(
βx̂+ 1

x̂+ γ

)d

and 1 = λd(1− βγ)
(βx̂+ 1)d−1

(x̂+ γ)d+1
,

which together implies another identity

d(1− βγ)x̂ = (βx̂+ 1)(x̂+ γ).(A.1)

The goal is to find a potential function such that

α(x) = |f ′(x)|Φ(f(x))
Φ(x) ≤ 1 for all x. On the other hand,

we have α(x̂) = |f ′(x̂)|Φ(f(x̂))
Φ(x̂) = 1 · Φ(x̂)

Φ(x̂) = 1. So α(x)

achieves its maximum when x = x̂. As a differentiable
function, it holds that α′(x̂) = 0, that is

[
f ′(x) · Φ(f(x))

Φ(x)

]′∣∣∣∣∣
x=x̂

= 0.
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We have the following calculation:[
f ′(x) · Φ(f(x))

Φ(x)

]′∣∣∣∣∣
x=x̂

= 0

⇔ [f ′(x)Φ(f(x))]
′
Φ(x)

∣∣∣
x=x̂

= f ′(x)Φ(f(x))Φ′(x)|x=x̂

⇔ [f ′′(x̂)Φ(f(x̂)) + f ′(x̂)Φ′(f(x̂))f ′(x̂)] Φ(x̂)

= f ′(x̂)Φ(f(x̂))Φ′(x̂)

⇔ f ′′(x̂)Φ(x̂) + Φ′(x̂) = −Φ′(x̂)

⇔ −f ′′(x̂)

2
=

Φ′(x̂)

Φ(x̂)
= (ln(Φ(x̂)))

′
,

where in the above calculation we use the facts that
x̂ = f(x̂) and f ′(x̂) = −1.

Taking the second derivative of f(x), we have

f ′′(x) = λd(βγ − 1)
(βx+ 1)d−2

(x+ γ)d+2

· ((d− 1)β(x+ γ)− (d+ 1)(βx+ 1)) .

This equation already gives an identity for Φ. But it
is too complicated. We may further simplify the above
formula at the point x = x̂.

f ′′(x̂) = λd(βγ − 1)
(βx̂+ 1)d−2

(x̂+ γ)d+2

· ((d− 1)β(x̂+ γ)− (d+ 1)(βx̂+ 1))

=
(d+ 1)(βx̂+ 1)− (d− 1)β(x̂+ γ)

(βx̂+ 1)(x̂+ γ)

=
d+ 1

x̂+ γ
− (d− 1)β

βx̂+ 1

=
d(1− βγ)

(βx̂+ 1)(x̂+ γ)
+

1

x̂+ γ
+

β

βx̂+ 1

=
1

x̂
+

1

x̂+ γ
+

β

βx̂+ 1
.

So we have

(ln (Φ(x̂)))
′
= −f ′′(x̂)

2

= −1

2
(
1

x̂
+

1

x̂+ γ
+

β

βx̂+ 1
).(A.2)

We apply the heuristics and assume that (A.2) simply
holds for all x. This gives us a differential equation

(ln(Φ(x)))
′
= −1

2
(
1

x
+

1

x+ γ
+

β

βx+ 1
).

The solution of this differential equation is

ln(Φ(x)) = −1

2
ln(x(x+ γ)(βx+ 1)) + C1,

which gives that

Φ(x) =
C2√

x(βx+ 1)(x+ γ)
,

where C1, C2 are some constants. This gives the
potential function we used in the paper.

There are also other equations which hold for the
fixed point x̂. Choosing which equation for x̂ to
heuristically extend to all x may affect the potential
function we obtained. For example, (A.1) implies that

1

dx̂
=

1− βγ

(βx̂+ 1)(x̂+ γ)
=

1

x̂+ γ
− β

βx̂+ 1
,

thus we can rewrite f ′′(x̂) as

f ′′(x̂) =
1

x̂
+

1

x̂+ γ
+

β

βx̂+ 1
=

d+ 1

dx̂
+

2β

βx̂+ 1
.

This gives that

(ln(Φ(x̂)))
′
= −d+ 1

2dx̂
− β

βx̂+ 1
.

We can also treat this equation as a differential equation
for variable x and solving it gives us

Φ(x) =
c

x
d+1
2d (βx+ 1)

,

which is the potential function used in [15].
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