
Budget Feasible Mechanism Design:
From Prior-Free to Bayesian

Xiaohui Bei
∗

Ning Chen
†

Nick Gravin
†

Pinyan Lu
‡

ABSTRACT
Budget feasible mechanism design studies procurement com-
binatorial auctions in which the sellers have private costs to
produce items, and the buyer (auctioneer) aims to maxi-
mize a social valuation function on subsets of items, un-
der the budget constraint on the total payment. One of
the most important questions in the field is “which valu-
ation domains admit truthful budget feasible mechanisms
with ‘small’ approximations (compared to the social opti-
mum)?” Singer [35] showed that additive and submodular
functions have a constant approximation mechanism. Re-
cently, Dobzinski, Papadimitriou, and Singer [20] gave an
O(log2 n) approximation mechanism for subadditive func-
tions; further, they remarked that: “A fundamental ques-
tion is whether, regardless of computational constraints, a
constant-factor budget feasible mechanism exists for subad-
ditive functions.”

In this paper, we address this question from two view-
points: prior-free worst case analysis and Bayesian analysis,
which are two standard approaches from computer science
and economics, respectively.

• For the prior-free framework, we use a linear program
(LP) that describes the fractional cover of the valua-
tion function; the LP is also connected to the concept
of approximate core in cooperative game theory. We
provide a mechanism for subadditive functions whose
approximation is O(I), via the worst case integrality
gap I of this LP. This implies anO(logn)-approximation
for subadditive valuations, O(1)-approximation for XOS
valuations, as well as for valuations having a constant

∗Institute for Interdisciplinary Information Sci-
ences, Tsinghua University, China. Email:
bxh08@mails.tsinghua.edu.cn.
†Division of Mathematical Sciences, School of Physical and
Mathematical Sciences, Nanyang Technological University,
Singapore.
Email: ningc@ntu.edu.sg, ngravin@pmail.ntu.edu.sg.
‡Microsoft Research Asia. Email: pinyanl@microsoft.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

integrality gap. XOS valuations are an important class
of functions and lie between the submodular and the
subadditive classes of valuations. We further give an-
other polynomial time O(logn

log logn
) sub-logarithmic ap-

proximation mechanism for subadditive functions.
Both of our mechanisms improve the best known ap-
proximation ratio O(log2 n).

• For the Bayesian framework, we provide a constant ap-
proximation mechanism for all subadditive functions,
using the above prior-free mechanism for XOS valua-
tions as a subroutine. Our mechanism allows correla-
tions in the distribution of private information and is
universally truthful.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General; J.4 [Social and
Behavioral Sciences]: Economics

General Terms
Theory, Economics

Keywords
Mechanism design, budget feasible, prior-free, Bayesian, sub-
modular, subadditive, approximation

1. INTRODUCTION
Consider a procurement combinatorial auction problem

where there is a buyer who wants to purchase resources from
a set of agents A. Each i ∈ A is able to supply a resource
at an incurred cost c(i). The buyer has a sharp budget B
that gives an upper bound on the compensation that is dis-
tributed among agents, and a function v(·) describing the
valuation that the buyer obtains for each subset of A. This
defines a natural optimization problem: find a subset S ⊆ A
that maximizes v(S) subject to

∑
i∈S c(i) ≤ B. The bud-

geted optimization problem has been considered in a variety
of domains with respect to different valuation functions, e.g.,
additive (a.k.a. knapsack), and submodular [37].

Agents, as self-interested entities, may want to get as
many subsidies as possible. In particular, an agent can hide
his true incurred cost c(i) (which is known only to himself)
and claim ‘any’ amount b(i) instead. We adopt the approach
of mechanism design to manage self-interested, but strate-
gic, behaviors of the agents: Given submitted bids b(i) from
all agents, a mechanism decides a winning set S ⊆ A and a
payment p(i) to each winner i ∈ S. A mechanism is called

449

truthful (a.k.a. incentive compatible) if for every agent it is
a dominant strategy to bid his true cost1, i.e., b(i) = c(i).
Truthfulness is one of the central solution concepts in mecha-
nism design. It ensures that every participant will behave
truthfully to his best interest.

Our mechanism design problem has an important and
practical ingredient: the budget, i.e., the total payment of
a mechanism should be upper bounded by B. The budget
constraint introduces a new dimension to mechanism design
and restricts the space of truthful mechanisms. For example,
in single-parameter domains where the private information
of every individual is a single value (which is the case in our
model), a monotone allocation rule with associated thresh-
old payments provides a sufficient and necessary condition
for truthfulness [31]. However, it may not necessarily gener-
ate a budget feasible solution. Thus, a number of well known
truthful designs (e.g., the seminal VCG mechanism [38, 16,
24]) do not apply, and new ideas have to be developed.

Another significant challenge due to the budget constraint
is that, unlike the VCG mechanism which always generates a
socially optimal solution, we cannot hope to have a solution
that is both socially optimal and budget feasible even if we
are given unlimited computational power. Indeed, in a sim-
ple setting like path procurement with 0 or 1 valuation [35],
any budget feasible mechanism may have an arbitrarily bad
solution. Therefore, the question that one may ask is “un-
der which valuation domains do there exist truthful bud-
get feasible mechanisms that admit ‘small’ approximations
(compared to the socially optimal solution)?”

The answer to this question crucially depends on the prop-
erties and classifications of the valuation function under con-
sideration. In particular, given the following function hier-
archy [29]:

additive ⊂ gross substitutes ⊂ submodular

⊂ XOS ⊂ subadditive,

which one admits a positive answer? Singer [35] initiated
the study of approximate budget feasible mechanism design
and gave constant approximation mechanisms for additive
and submodular functions. In subsequent work, Dobzinski,
Papadimitriou, and Singer [20] considered subadditive func-
tions and showed an O(log2 n) approximation. Further, it
was remarked in [20] that:

“A fundamental question is whether, regardless
of computational constraints, a constant-factor
budget feasible mechanism exists for subadditive
functions.”

— Dobzinski, Papadimitriou, Singer

In the present paper we attempt to answer this question.

1.1 Our Results and Techniques
We address this question from two viewpoints: prior-free

worst case analysis and Bayesian analysis. The former is the
standard framework used in computer science: in our model,
the private cost c(i) of every agent is assumed to be arbi-
trary without any prior knowledge. All previous research
on budget feasible mechanism design, e.g. [35, 14, 20, 22]

1The focus of our work is to consider strategic behaviors of the
agents rather than the buyer. We thus assume that the informa-
tion related to the buyer, i.e., budget B and valuation function
v(·), is public knowledge.

falls into this framework. The latter Bayesian analysis [31]
is a classic economic approach that assumes the private in-
formation of the agents is drawn from a given prior-known
distribution. Bayesian mechanism design has received a lot
of attention in the computer science community in recent
years, see, e.g., [27, 28, 26, 7, 11, 18, 13, 25, 5, 12, 17].

Prior-free mechanism design.
Consider the following linear program (LP), where α(·)’s

are variables.

min
∑
S⊆A

α(S) · v(S)

s.t. α(S) ≥ 0, ∀ S ⊆ A∑
S: i∈S

α(S) ≥ 1, ∀ i ∈ A

Constraints of this LP describe a fractional set cover of A,
where each set S receives weight α(S) and we require that
all agents in A are covered. An important observation about
this LP is that for any monotone subadditive function v(·),
the value of the optimal integral solution is precisely v(A).

The above LP has a strong connection to the core of cost
sharing games (considering v(·) instead as a cost function),
which is a central notion in cooperative game theory [33].
Roughly speaking, the core of a game is a stable cooperation
among all agents to share v(A) where no subset of agents
can benefit by breaking away from the grand coalition. It is
well known that the cores of many cost sharing games are
empty. This motivates the notion of α-approximate core,
which requires all the agents to share only an α-fraction
of v(A). The classic Bondareva-Shapley Theorem [9, 34]
says that for subadditive functions, the largest value α for
which the α-approximate core is nonempty is equal to the
integrality gap of the LP. Further, the integrality gap of
the LP equals one (i.e., v(A) is also an optimal fractional
solution) if and only if the valuation function is XOS, which
is also equivalent to the non-emptiness of the core.

Given an instance of our problem with an agent set A, we
may consider the above LP and its integrality gap for every
subinstance A′ ⊆ A. We denote I as the largest integrality
gap among all subinstances A′ ⊆ A. In other words, the gap
I characterizes the worst case scenario between the optimal
integral and fractional solutions of the problem. We have
the following result.

Theorem 1. There is a budget feasible truthful mechanism
for subadditive functions with approximation ratio O(I). In
particular, for XOS functions, the mechanism has a constant
approximation ratio.

Our results show an interesting connection between the
budget feasible mechanism design and the integrality gap
of the above linear program, as well as the existence of
an α-approximate core. Note that the tight bound of the
integrality gap is known to be Θ(logn) [19, 8]; thus, our
mechanism in the worst case has an approximation ratio of
O(logn). (But for some special functions whose integrality
gaps are bounded by constants, e.g., facility location [33],
our mechanism gives a constant approximation.) Further,
the mechanism may have exponential running time, though
for some special XOS functions like matching it can be im-
plemented in polynomial time. To remedy these issues, we
further give a polynomial time sub-logarithmic approxima-

450

tion mechanism. Both of our mechanisms improve the best
known approximation ratio O(log2 n) of [20].

Theorem 2. There is a polynomial time budget feasible
truthful mechanism for subadditive functions with an approx-
imation ratio O(logn

log logn
), where n is the number of agents.

Bayesian mechanism design.
As a standard game theoretic model for incomplete infor-

mation, Bayesian mechanism design assumes that agents’
private information (i.e., c(i) in our model) is drawn from
a known distribution. In contrast to prior-free worst case
analysis, if we have prior knowledge of the distribution, we
can obtain more positive results in the form of constant ap-
proximation truthful mechanisms. In the Bayesian setting,
we are able to answer the above question posed in [20] affir-
matively.

Theorem 3. There is a constant approximation budget fea-
sible truthful mechanism for subadditive functions for any
distribution under a mild assumption2.

It should be noted that our result does not completely rely
on Bayesian analysis in the following aspects.

• Truthfulness. In most of the previous works in Baye-
sian mechanism design regarding social welfare max-
imization, e.g., [26, 5, 25, 12], the considered solu-
tion concept is Bayesian truthfulness, i.e., truth-telling
is in expectation an equilibrium strategy when other
agents’ profiles are drawn from the known distribu-
tion. Our mechanism guarantees universal truthful-
ness, meaning that truth-telling is a dominant strategy
of each agent for any coin flips of the mechanism and
any instance of the costs. Thus universal truthfulness
is a stronger solution concept than Bayesian truthful-
ness. Universal truthfulness in Bayesian mechanism
design has also been used in, e.g. [11], but their focus
was on profit maximization.

• Distribution. Regarding prior knowledge of the dis-
tribution, most of the previous related works consider
independent distributions, e.g., [27, 26, 5, 25]. Our
mechanism applies to general distributions that allow
correlations on costs. Dependency on private informa-
tion is a natural phenomenon arising in practice and
it has been considered for, e.g., auctions [30]. In our
model where costs are private information, correlations
appear to be very common. For example, if the price
of crude oil goes up, the costs of producing the items
for all agents may go up as well.

Techniques.
In the design of budget feasible mechanisms, the major

approach used in previous works [35, 14, 20] is based on a
simple idea of adding agents one by one greedily and care-
fully ensuring that the budget constraint is not violated.
Our mechanisms, from a high level structural point of view,
use another simple, but powerful, approach: random sam-
pling. We add agents into a test set T with probability

2Technically, we require that the distribution has integrable
marginal densities for any subset of variables (e.g., jointly inde-
pendent distributions trivially satisfy this condition). The formal
definition is referred to Section 4.

half for each agent and compute an (approximately) opti-
mal budget feasible solution on T . We use the agents in T
only for the purpose of ‘evaluation’ and none of them will
be a winner. The computed solution on T gives a close es-
timate of the optimal solution for the whole set with a high
probability. We then compute a real winning set from the
remaining agents using the evaluation from T as a threshold.

In the Bayesian setting, random sampling is often deemed
to be unnecessary, because, when we have knowledge of the
distribution, it is tempting to use a ‘prior sampling’ ap-
proach to generate random virtual instances and based on
them to compute a threshold. While this works well when
the private cost c(i) of every agent is drawn independently,
interestingly (and surprisingly), it fails when costs c(i)’s are
correlated in the distribution. We therefore still use random
sampling to compute a threshold based on the sampled test
set; the collected information from random sampling cor-
rectly reflects the structure of the private costs (with a high
probability) even for correlated distributions. To derive a
constant approximation budget feasible mechanism for sub-
additive functions, we first generate a cost vector sampled
from the known distribution and use it as a guidance for
the payments to the winners. Then we adopt our (constant
approximation) mechanism for prior-free XOS functions by
feeding to this mechanism another valuation ṽ(·), which we
define as the solution of the above LP computed for the
various subsets of A.

Random sampling appears to be a powerful approach and
has been used successfully in other domains of mechanism
design, e.g., digital goods auctions [23], secretary problem [3,
2], social welfare maximization [19], and mechanism design
without money [15]. It is intriguing to find applications of
random sampling in other mechanism design problems.

1.2 Related Work
Our work falls into the field of algorithmic mechanism

design, which is a fascinating area initiated by the seminal
work of Nisan and Ronen [32]. There are many mechanism
design models; see, e.g., [33], for a survey.

As mentioned earlier, the study of approximate mecha-
nism design with a budget constraint was originated by
Singer [35] and constant approximation mechanisms were
given for additive and submodular functions. The approx-
imation ratios were later improved in [14]. Dobzinski, Pa-
padimitriou, and Singer [20] considered subadditive func-
tions and showed an O(log2 n) approximation mechanism.
Ghosh and Roth [22] considered a budget feasible mecha-
nism design model for selling privacy where there are exter-
nalities for each agent’s cost. All these models considered
prior-free worst case analysis.

For Bayesian mechanism design, Hartline and Lucier [26]
first proposed a Bayesian reduction in single-parameter set-
tings that converts any approximation algorithm to a Baye-
sian truthful mechanism that approximately preserves social
welfare. The blackbox reduction results were later improved
to multi-parameter settings in [5] and [25] independently.
Chawla et al. [12] considered budget-constrained agents and
gave Bayesian truthful mechanisms in various settings. A
number of other Bayesian mechanism design works consid-
ered profit maximization, e.g., [27, 7, 13, 18, 11, 17]. Ours
is the first to consider Bayesian analysis in budget feasible
mechanisms with a focus on the valuation (social welfare)
maximization.

451

2. PRELIMINARIES
In a marketplace, there are n agents (or items), denoted

by A. Each agent i ∈ A has a privately known incurred
cost c(i) ≥ 0. We denote by c = (c(i))i∈A the cost vec-
tor of the agents. For any given subset S ⊆ A of agents,
there is a publicly known valuation v(S), meaning the social
welfare derived from S. We assume that v(∅) = 0 and the
valuation function is monotone, i.e., v(S) ≤ v(T) for any
S ⊂ T ⊆ A. A centralized authority wants to pick a subset
of agents with maximum possible valuation given a sharp
budget B to cover their incurred costs, i.e., max

S⊆A
v(S)

given c(S) =
∑
i∈S c(i) ≤ B. We denote the optimal solu-

tion of this optimization question by opt(A) (or opt(c)) and
its valuation by v(opt(A)).

We will consider XOS and subadditive functions in the
paper; both are rather general classes and contain a number
of well studied functions as special cases, e.g., additive, gross
substitutes, and submodular.

• Subadditive (a.k.a. complement free): v(S) + v(T) ≥
v(S ∪ T) for any S, T ⊆ A.

• XOS (a.k.a. fractionally subadditive): there is a set of
linear functions f1, . . . , fm such that

v(S) = max
{
f1(S), f2(S), . . . , fm(S)

}
for any S ⊆ A. Note that the number of functions m
can be exponential in n = |A|.
An equivalent definition [21] is v(S) ≤

∑
T⊆A x(T) ·

v(T) whenever
∑
T⊆A: i∈T x(T) ≥ 1 for any i ∈ S,

where 0 ≤ x(T) ≤ 1. That is, if every element in S is
fractionally covered, then the sum of the values of all
subsets weighted by the corresponding fractions is at
least as large as v(S).

Note that the representation of a valuation function usu-
ally requires exponential size in n. Thus, we assume that
we are given an access to a demand oracle, which, for any
given price vector p(1), . . . , p(n), returns us a subset T ∈
argmax

S⊆A

(
v(S)−

∑
i∈S p(i)

)
; every such query is assumed

to take unit time. The demand oracle is used in [20] as well,
and it was shown that a weaker value query oracle is not
sufficient [35].

Agents, as self-interested entities, have their own objective
as well; each agent i may not tell his true privately known
cost c(i), but, instead, submit a bid b(i) strategically. We
use mechanism design and its solution concept truthfulness
to manage strategic behaviors of the agents. Upon receiving
b(i) from each agent, a mechanism decides an allocation S ⊆
A of the winners and a payment p(i) to each i ∈ A. We
assume that the mechanism has no positive transfer (i.e.,
p(i) = 0 if i /∈ S) and is individually rational (i.e., p(i) ≥ b(i)
if i ∈ S).

In a mechanism, agents bid strategically to maximize their
utilities, which is p(i)− c(i) if i is a winner and 0 otherwise.
We say a mechanism is truthful if it is of the best interest
for each agent to report his true cost, i.e., b(i) = c(i). For
randomized mechanisms, we consider universal truthfulness
in this paper: a randomized mechanism is called universally
truthful if it takes a distribution over deterministic truthful
mechanisms.

Note that our model is in a single parameter domain, as
each agent has only one private parameter which is his cost.

Thus, by the well known characterization of single parameter
truthful mechanisms [31], designing a monotone allocation,
plus the corresponding threshold payment rule, is sufficient
to derive a truthful mechanism. We therefore do not specify
the payments to the winners in our mechanisms explicitly.

A mechanism is said to be budget feasible if its total pay-
ment is within the budget constraint, i.e.,

∑
i p(i) ≤ B. Our

goal in the present paper is to design truthful and budget
feasible mechanisms for XOS and subadditive functions in
two frameworks: prior-free and Bayesian.

We first establish the following technical lemma, which is
useful in the analysis of our mechanisms.

Lemma 2.1. Consider any subadditive function v(·). For
any given subset S ⊆ A and a positive integer k, we assume
that v(S) ≥ k · v(i) for any i ∈ S. Further, suppose that
S is divided uniformly at random into two groups T1 and
T2. Then, with probability of at least 1

2
, we have v(T1) ≥

k−1
4k
v(S) and v(T2) ≥ k−1

4k
v(S).

3. PRIOR-FREE MECHANISM DESIGN
In this section we consider designing budget feasible mech-

anisms for XOS and subadditive functions in the prior-free
setting. That is, the mechanism designer has no prior knowl-
edge of the private information c(i) of every agent, which
can be an arbitrary cost, and the performance of a designed
mechanism is analyzed in the worst case framework. That is,
we evaluate a mechanism according to its approximation ra-

tio, which is defined as maxc
v(opt(c))
M(c)

, whereM(c) is the (ex-

pected) value of a mechanism M on instance c = (c(i))i∈A
and v(opt(c)) is its optimal value. (We assume without loss
of generality that c(i) ≤ B for any i ∈ A, since such an agent
will never win in any budget feasible truthful mechanism.)

3.1 Constant Approximation for XOS
We will first consider XOS functions. Given an XOS func-

tion v(·), by its definition, we assume that

v(S) = max {f1(S), f2(S), . . . , fm(S)}

for any S ⊆ A, where each fj(·) is a nonnegative additive
function, i.e., fj(S) =

∑
i∈S fj(i).

In our mechanism, we use a random mechanism Additive-
mechanism for additive valuation functions as an auxil-
iary procedure, where Additive-mechanism is a universally
truthful mechanism and has an approximation factor of at
most 3 (see, e.g., Theorem B.2, [14]).

XOS-random-sample

1. Pick each item independently at random with
probability 1

2
into group T.

2. Compute an optimal solution opt(T) for items
in T given budget B.

3. Set a threshold t =
v(opt(T))

8B
.

4. Consider items in A \ T and find a set
S∗ ∈ argmax

S⊆A\T

{
v(S)− t · c(S)

}
.

5. Find an additive function f with f(S∗) = v(S∗)
in the XOS representation of v(·).

6. Run Additive-mechanism for function f(·) with
respect to set S∗ and budget B.

7. Output the result of Additive-mechanism.

452

In the above mechanism, we first sample in expectation
half items to form a testing group T , and compute an opti-
mal solution for T given budget constraintB. By Lemma 2.1,
we know that v(opt(A)) ≥ v(opt(T)) ≥ k−1

4k
v(opt(A)) and

v(opt(A\T)) ≥ k−1
4k
v(opt(A)) with a probability of at least

1
2
. That is, we are able to learn the rough value of the op-

timal solution by random sampling, and still keep a nearly
optimal solution formed with the remaining items. We then
use the information from random sampling to compute a
proper threshold t for the rest of items. Specifically, we find
a subset S∗ ⊆ A \ T with the largest difference between its
value and cost, multiplied by the threshold t (in the compu-
tation of S∗, if there are multiple choices, we break ties by
any given fixed order). Finally, we use the property of XOS
functions to find a linear representation of v(S∗) and run a
truthful mechanism for linear functions with respect to S∗.

The mechanism is designated for XOS functions; it is also
used crucially as an auxiliary procedure for the more general
subadditive functions in the subsequent sections. Note that
the runtime of the mechanism for general XOS functions is
exponential3.

Note that in Step (4), the function v(S)− t · c(S) that we
maximize is simply the Lagrangian function

v(S)− x · c(S) + x ·B

(note that x · B is a fixed constant) of the original opti-
mization problem maxS v(S) subject to c(S) ≤ B. While
we do not know the actual value of the variable x in the
Lagrangian, a carefully chosen parameter t in the sampling
step with a high probability ensures that maxS

{
v(S) − t ·

c(S)+ t ·B
}

gives a constant approximation of the optimum

maxS

{
v(S) − x · c(S) + x · B

}
of the Lagrangian, which is

precisely the targeted value v(opt(A)).
The linearity of the Lagrangian, together with the subad-

ditivity of the valuations, is important in order to derive the
following properties. (The threshold t, subset S∗, and addi-
tive function f are defined in the XOS-random-sample.)

Claim 3.1. For any S ⊆ S∗, f(S)− t · c(S) ≥ 0.

Proof. Suppose by a contradiction that there exists a
subset S ⊆ S∗ such that f(S)− t ·c(S) < 0. Let S′ = S∗ \S.
Since f is an additive function, we have c(S′)+c(S) = c(S∗)
and f(S′) + f(S) = f(S′ ∪ S) = f(S∗) = v(S∗). Thus,

v(S′)− t · c(S′) ≥ f(S′)− t · c(S′)
= v(S∗)− t · c(S∗)−

(
f(S)− t · c(S)

)
> v(S∗)− t · c(S∗),

which contradicts the definition of S∗.

The following claim says that any item in S∗ cannot ma-
nipulate the selection of the set S∗ if bidding a smaller cost.
This fact is critical for the monotonicity, and thus, the truth-
fulness of the mechanism.

3In fact, in the second step of the mechanism, we can use any
constant approximation solution (e.g., algorithm SA-alg-max es-
tablished in Section 3.3), which suffices for our purpose. Further,
Step (4) can be done by simply asking a demand query. Hence,
the mechanism can be implemented in polynomial time, if we
have access to an oracle that, for any subset X of items, gives a
linear function f with f(X) = v(X) and f(S) ≤ v(S) for each
S ⊆ X. For some classic XOS problems like matching (the value
of a subset of edges is the size of the largest matching induced by
them), our mechanism can be implemented in polynomial time.

Claim 3.2. If any item j ∈ S∗ reports a smaller cost
b(j) < c(j), then set S∗ remains the same.

Proof. Let b be the bid vector where j reports b(j) and
others remain unchanged. First we notice that for any set S
with j ∈ S,

(
v(S)−t·b(S)

)
−
(
v(S)−t·c(S)

)
= t
(
c(j)−b(j)

)
is a fixed positive value. Hence,

v(S∗)− t · b(S∗) = v(S∗)− t · c(S∗) + t
(
c(j)− b(j)

)
≥ v(S)− t · c(S) + t

(
c(j)− b(j)

)
= v(S)− t · b(S).

Further, for any set S with j /∈ S, we have

v(S∗)− t · b(S∗) > v(S∗)− t · c(S∗)
≥ v(S)− t · c(S)

= v(S)− t · b(S).

Therefore, we conclude that S∗ = argmax
S⊆A\T

(
v(S) − t · b(S)

)
;

and by the fixed tie-breaking rule, S∗ is selected as well.

Our main mechanism for XOS functions is simply a uni-
form distribution of the mechanism XOS-random-sample
and one that always picks an item from argmaxi v(i).

XOS-mechanism-main

• With half probability, run XOS-random-sample.

• With half probability, pick a most-valuable
item as the only winner and pay him B.

Theorem 3.1. The mechanism XOS-mechanism-main
is budget feasible and truthful, and provides a constant ap-
proximation ratio for XOS valuation functions.

In the remaining of this section, we will prove the theorem.
It follows from the following three lemmas.

Lemma 3.1. XOS-mechanism-main is universally truth-
ful.

Our mechanism, at a high level point of view, has a similar
flavor to the mechanism composition introduced in [1]. In
particular, we may consider Steps (1-4) as one mechanism
of choosing candidate winners and Steps (5-7) as the other
restricted on the survived agents; then the whole mecha-
nism is a composition of the two. It was shown in [1] that
if the first mechanism is composable (i.e., truthful plus the
property that any winner cannot manipulate the winner set
without losing) and the second one is truthful, then the
composite mechanism is truthful. In our mechanism XOS-
mechanism-main, composability of Steps (1-4) follows from
Claim 3.2 and truthfulness of Steps (5-7) is by the prop-
erty of Additive-mechanism. Therefore, the mechanism is
truthful.

Lemma 3.2. XOS-mechanism-main is budget feasible.

In the mechanism XOS-random-sample, the payment to
each winner is the maximum amount that the agent can bid
and still win. This amount is the minimum of the thresh-
old bids in each of the intermediate steps (e.g., Step (4)
and (6)). In particular, the payment is upper bounded by
the threshold of the mechanism Additive-mechanism in
Step (6). As Additive-mechanism is budget feasible [14],
our mechanism XOS-random-sample is budget feasible as
well. Finally, picking the largest item and paying it the
whole budget are clearly a budget feasible mechanism.

453

Lemma 3.3. XOS-mechanism-main has a constant ap-
proximation ratio.

Proof. Let opt = opt(A) denote the optimal winning set

given budget B, and let k = mini∈opt
v(opt)
v(i)

. Thus v(opt) ≥
k·v(i) for each i ∈ opt. By Lemma 2.1, we have v(opt∩ T) ≥
k−1
4k
v(opt) with a probability of at least 1

2
. Thus, we have

v(opt(T)) ≥ v(opt∩T) ≥ k−1
4k
v(opt) with a probability of at

least 1
2

(the first inequality is because opt∩T is a particular
solution and opt(T) is an optimal solution for set T with
the budget constraint).

We let opt∗ = optf (S∗) be the optimal solution with
respect to the item set S∗, additive value-function f and
budget B. In the following we show that f(opt∗) is a good
approximation of the actual social optimum v(opt). Con-
sider the following two cases:

• c(S∗) > B. With such assumption, we can always find
a subset S′ ⊆ S∗, such that B

2
≤ c(S′) ≤ B. By

Claim 3.1, we know f(S′) ≥ t · c(S′) ≥ v(opt(T))
8B

· B
2
≥

v(opt(T))
16

. Then by the fact that opt∗ is an optimal
solution and S′ is a particular solution with budget

constraint B, we have f(opt∗) ≥ f(S′) ≥ v(opt(T))
16

≥
k−1
64k

v(opt) with a probability of at least 1
2
.

• c(S∗) ≤ B. Then opt∗ = S∗. Let S′ = opt\T ; thus,
c(S′) ≤ c(opt) ≤ B. By Lemma 2.1, we have v(S′) ≥
k−1
4k
v(opt) with a probability of at least 1

2
. Recall

that S∗ = argmaxS⊆A\T (v(S)− t · c(S)). Then with a

probability of at least 1
2
, we have

f(opt∗) = f(S∗) = v(S∗)

≥ v(S∗)− t · c(S∗)
≥ v(S′)− t · c(S′)

≥ k − 1

4k
v(opt)− v(opt(T))

8B
·B

≥ k − 1

4k
v(opt)− v(opt)

8

=
k − 2

8k
v(opt).

In either case, we get

f(opt∗) ≥ min

{
k − 1

64k
v(opt),

k − 2

8k
v(opt)

}
≥ k − 2

64k
v(opt)

with a probability of at least 1
2
. At the end we output the

result of Additive-mechanism(f, S∗, B) in the last step of
XOS-random-sample. We recall that Additive-mechanism
has an approximation factor of at most 3 with respect to the
optimal solution f(opt∗). Thus the solution given by XOS-
random-sample is at least 1

3
·f(opt∗) ≥ 1

3
· 1

2
· k−2

64k
v(opt) =

k−2
384k

v(opt).

On the other hand, since k = mini∈opt
v(opt)
v(i)

, the solu-

tion given by picking the largest item satisfies maxi v(i) ≥
1
k
v(opt). Combining the two mechanisms together, our main

mechanism XOS-mechanism-main has a performance of at
least(

1

2
· k − 2

384k
+

1

2
· 1

k

)
v(opt) =

k + 382

768k
v(opt) ≥ 1

768
v(opt).

This completes the proof of the lemma.

3.2 Integrality-Gap Approximations for Sub-
additive

Next we use our result for XOS functions to design a truth-
ful mechanism for subadditive functions. Let S1, . . . , SN be
a permutation of all possible subsets of A, where N = |2A|
is the size of the power set 2A. We consider the following
linear program for each subset S ⊆ A, where each subset Sj
is associated with a variable αj .

LP (S) : min

N∑
j=1

αj · v(Sj) (♦)

s.t. αj ≥ 0, 1 ≤ j ≤ N∑
j: i∈Sj

αj ≥ 1, ∀ i ∈ S

In the above linear program, the minimum is taken over
all possible non-negative values of α = (α1, . . . , αN). If we
consider each αj as the fraction of the cover by subset Sj ,
the last constraint implies that all items in S are fractionally
covered. Hence, LP(S) describes a linear program for the set
cover of S. For any subadditive function v(·), it can be seen
that the value of the optimal integral solution to the above
LP(S) is always v(S). Indeed, one has S ⊆

⋃
j: αj≥1 Sj and∑

j αj · v(Sj) ≥
∑
j: αj≥1 v(Sj) ≥ v

(⋃
j: αj≥1 Sj

)
≥ v(S).

Let ṽ(S) be the value of the optimal fractional solution of

LP(S), and I(S) = v(S)
ṽ(S)

be the integrality gap of LP(S). Let

I = maxS⊆A I(S); the integrality gap I gives a worst case
upper bound on the integrality gap of all subsets. Hence,

we have v(S)
I ≤ ṽ(S) ≤ v(S) for any S ⊆ A. The classic

Bondareva-Shapley Theorem [9, 34] says that the integral-
ity gap I(S) is one (i.e., v(S) is also an optimal fractional
solution to the LP) if and only if v(·) is an XOS function.

Lemma 3.4. ṽ(·) is an XOS function.

We are now ready to present our mechanism for subaddi-
tive functions.

SA-mechanism-main

1. For each subset S ⊆ A, compute ṽ(S).

2. Run XOS-mechanism-main for the instance with
respect to the XOS function ṽ(·).

3. Output the result of XOS-mechanism-main.

Theorem 3.2. The mechanism SA-mechanism-main is
budget feasible and truthful, and provides an approximation
ratio of O(I) for subadditive functions, where I is the largest
integrality gap of LP(S) for all S ⊆ A.

Proof. Note that the valuation v(·) is public knowledge
and utilities of agents do not depend on v(·); thus comput-
ing ṽ(·) and running XOS-mechanism-main with respect to
ṽ(·) do not affect truthfulness. The claim then follows from

Theorem 3.1 and the fact that v(S)
I ≤ ṽ(S) ≤ v(S) for any

S ⊆ A (i.e., by using ṽ(·) instead of v(·) we lose at most
factor of I in the approximation ratio).

In general, the approximation ratio of the mechanism can
be as large as Θ(log n) [19, 8]. But for those instances when
the integrality gap of (♦) is bounded by a constant (e.g.,
facility location [33]), our mechanism gives a constant ap-
proximation.

454

3.3 Sub-Logarithmic Approximations for Sub-
additive

In this section, we give another mechanism for subaddi-
tive functions based on the ideas of random sampling and
cost sharing. In contrast to the previous section, the mecha-
nism runs in polynomial time and has an o(logn) approx-
imation ratio, improving the previously best known ratio
O(log2 n) [20]. Our mechanism relies on a constant factor
approximation algorithm for subadditive function maximiza-
tion under a knapsack constraint, which may have its own
interest.

3.3.1 Subadditive Maximization with Budget
We first give an algorithm that approximates max

S⊆A
v(S)

given that c(S) ≤ B. That is, we ignore for a while strate-
gic behaviors of the agents and consider a pure optimization
problem. Dobzinski et al. [20] considered the same question
and gave a 4-approximation algorithm for the unweighted
case (i.e., the restriction is on the size of a selected subset).
Our algorithm extends their result to the weighted case and
runs in polynomial time if we are given a demand oracle4.

SA-alg-max

• Let v∗ = maxi∈A v(i) and V = {v∗, 2v∗, . . . , nv∗}
• For each v ∈ V

– Set p(i) = v
2B
· c(i) for each i ∈ A, and find

T ∈ argmax
S⊆A

(
v(S)−

∑
i∈S p(i)

)
.

– Let Sv = ∅.
– If v(T) < v

2
, then continue to next v.

– Else, in decreasing order of c(i) put items
from T into Sv while preserving the budget
constraint.

• Output: Sv with the largest value v(Sv) for
all v ∈ V.

Lemma 3.5. SA-alg-max is an 8-approximation algo-
rithm for subadditive maximization given a demand oracle.

Note that we can actually modify the algorithm to get
a (4 + ε)-approximation with running time polynomial in
n and 1

ε
. To do so one may simply replace V by a larger

set
{
εv∗, 2εv∗, . . . , dn

ε
eεv∗

}
. Both algorithms suffice for our

purpose; for the rest of the paper, for simplicity we will use
the 8-approximation algorithm to avoid the extra parameter
ε in the description.

We will use SA-alg-max as a subroutine to build a mecha-
nism SA-random-sample for subadditive functions in the
next subsection. When there are different sets maximizing
v(S)−

∑
i∈S p(i), we require that the demand query oracle

always returns a fixed set T . This property is important for
the truthfulness of our mechanism. To implement this, we
set a fixed order on all the items i1 ≺ i2 ≺ · · · ≺ in. We first
compute

T1 ∈ argmax
S⊆A

(
v(S)−

∑
i∈S

p(i)
)

and

T2 ∈ argmax
S⊆A\{i1}

(
v(S)−

∑
i∈S

p(i)
)
.

4Independent to our work, Badanidiyuru et al. [4] gave a 2 + ε
approximation algorithm to the same weighted problem.

If v(T1) −
∑
i∈T1

p(i) = v(T2) −
∑
i∈T2

p(i), we know that
there is a subset without i1 that gives us the maximum;
thus, we ignore i1 for further consideration. If v(T1) −∑
i∈T1

p(i) > v(T2)−
∑
i∈T2

p(i), we know that i1 should be
in any optimal solution; hence, we keep i1 and proceed with
the process iteratively for i2, i3, . . . , in. This process clearly
gives a fixed outcome that maximizes v(S)−

∑
i∈S p(i).

3.3.2 Mechanism
Let us first consider the following mechanism based on

random sampling and cost sharing.

SA-random-sample

1. Pick each item independently at random with
a probability of 1

2
into group T.

2. Run SA-alg-max for items in group T, and let
v be the value of the returned subset.

3. For k = 1 to |A \ T |

• Run SA-alg-max on the set{
i ∈ A \ T | c(i) ≤ B

k

}
where each item has

cost B
k
, denote the output by X.

• If v(X) ≥ log logn
80 logn

· v

– Output X as the winning set and pay B
k

to each item in X.

– Halt.

4. Output ∅.

In the above mechanism, we again first sample in expecta-
tion half of the items to form a testing group T , and then use
SA-alg-max to compute an approximate solution for the
items in T given the budget constraint B. As can be seen
in the analysis of the mechanism, the computed value v is
in expectation within a constant factor of the optimal value
of the whole set A. That is, we are able to learn the rough
value of the optimal solution by random sampling. Next we
consider the remaining items A \ T and try to find a subset
X with a relatively big value in which every item is willing
to“share” the budget B at a fixed share B

k
. (This part of our

mechanism can be viewed as a reversion of the classic cost
sharing mechanism.) Finally, we use the information v from
random sampling as a benchmark to determine whether X
should be a winning set or not.

The final mechanism for subadditive functions is described
as follows.

SA-mechanism-main-2

• With half probability, run SA-random-sample.

• With half probability, pick a most-valuable
item as the only winner and pay him B.

Theorem 3.3. SA-mechanism-main-2 runs in polyno-
mial time given a demand oracle and is a truthful budget
feasible mechanism for subadditive functions with an approx-
imation ratio of O(logn

log logn
).

4. BAYESIAN MECHANISM DESIGN
In this section, we study budget feasible mechanisms for

subadditive functions from a standard economics viewpoint,
where the costs of all agents (c(i))i∈A are drawn from a prior

455

known distribution D. More specifically, the mechanism de-
signer and all participants know D in advance from which
the real cost vector (c(i))i∈A is drawn. However, each c(i) is
the private information of agent i. Distribution D is given
on the probability space Ω with the corresponding density
function ρ(·) on R|A|. We allow dependencies on the agents’
costs in D and consider the distributions that have inte-
grable marginal densities for any subset of variables5; this
includes, e.g., independent distributions as special cases.

Every agent submits a bid b(i) as before and seeks to max-
imize his own utility. We again consider universally truthful
mechanisms, i.e., for every coin flips of the mechanism and
each cost vector, truth-telling is a dominant strategy for
every agent. The performance of a mechanism M is mea-
sured by E[M] = Ec∼D[M(c)]. We compare a mechanism
with the optimal expected value E[opt] = Ec∼D

[
v(opt(c))

]
;

we say mechanism M is a (Bayesian) α-approximation if
E[opt]
E[M]

≤ α.

In this section: Let optv(c, S) denote the winning set in
an optimal solution when the valuation function is v(·), the
cost vector is c, and the agent set is S (the parameters are
omitted if they are clear from the context); let v(optv(c, S))
denote the value of optv(c, S).

Our mechanism is as follows.

SA-Bayesian-mechanism

• With a probability of 1
2
, let a most-valuable

item be the only winner and pay him B.

• With a probability of 1
2
, run the following:

1. Pick each item independently at random
with a probability of 1

2
into group T.

2. Compute an optimal solution opt(c, T) for
items in T given budget B.

3. Set a threshold t =
v(opt(c,T))

8B
.

4. For items in A \ T find a set
S∗ ∈ argmax

S⊆A\T

{
v(S)− t · c(S)

}
.

5. Sample a cost vector d ∼ D conditioned on

(a) d(i) = c(i) for each i ∈ T, and

(b) S∗ ∈ argmax
S⊆A\T

{
v(S)− t · d(S)

}
.

6. If d(S∗) < B, let all i ∈ S∗ with c(i) ≤ d(i)
be the winners.

7. If d(S∗) ≥ B,

– run XOS-mechanism-main w.r.t. valua-
tion ṽ(·), set S∗, cost c(·), and budget
B.

– Output the result of XOS-mechanism-
main.

In the mechanism, Steps (1-3) are the same as XOS-
random-sample where we randomly sample a test group
T and generate a threshold value t. In Steps (4-7), we con-
sider a specific subset S∗ ⊆ A \ T and select winners only

5We need some mild technical restriction on D in order to sample
a conditioned random variable. We assume that the density func-
tion ρ(·) of D is integrable over each subset S ⊆ A of its variables
for any choice of the rest parameters, i.e., ρ(cA\S) =

∫
Ω ρ(c) dxS

is bounded. This condition is reminiscent of integrability of
marginal density functions (see, e.g., page 331 of [36]), though
in our case we require a slightly stronger condition.

inside of it. Step (5) helps to give us a guidance on the
threshold payments of the winners (see more discussions be-
low). Step (7) runs XOS-mechanism-main on the function
ṽ(·) (defined as the optimal value of the LP (♦)), which is
XOS according to Lemma 3.4.

A few remarks about the mechanism are in order.

• It is tempting to remove the random sampling part, as
given D one may consider a ‘prior sampling’ approach:
Generate some virtual instances according to D and
compute a threshold t based on them; then apply this
threshold to all agents in A. Interestingly, the prior
sampling approach works well in our mechanism when,
e.g., all c(i)’s are independent, but it does not work for
the case when variables are dependent.

For instance, consider an additive valuation v(·) with
v(S) = |S|, budget B = 2k for a large k, and a set of
N = 2k agents with the following discrete distribution
over costs (c = ` means that every c(i) = `):

Pr[c = 1] =
1

2k+1
,Pr[c = 2] =

1

2k
, ,

Pr
[
c = 2k

]
=

1

2
,Pr

[
c = 2k+1] =

1

2k+1
.

Note that

v(opt(c = 1)) = 2k, v(opt(c = 2)) = 2k−1, ,

v
(
opt
(
c = 2k

))
= 1, v

(
opt
(
c = 2k+1)) = 0.

Then the expected optimal value is E[opt] = k+1
2

and
it is equally spread over all possible costs except the
last one c = 2k+1. Roughly speaking, on a given in-
stance c, any prior estimate on v(opt(c)) that gives
a constant approximation only applies to a constant
number of distinct costs (the contribution of these cases
to E[opt] is negligible). Hence for almost all other pos-
sible costs, we get a meaningless estimate for opt(c).
Therefore, the prior sampling will lead to a bad ap-
proximation ratio.

• Why do we generate another cost vector d in Step (5)?
Recall that our target winner set is S∗, whose value
v(S∗) in expectation gives a constant approximation
of E[opt]. However, we are faced with the problems of
selecting a winning set in S∗ with a sufficiently large
value and distributing the budget among the winners.
These two problems together are closely related to co-
operative game theory and the notion of approximate
core. For subadditive functions, a constant approxi-
mate core may not exist [33] (e.g., set cover gives a
logarithmic lower bound [8]). Thus we might not be
able to pick a winning set with a constant approxima-
tion and set threshold payments in accordance with the
valuation function. The question then is: Is there any
other guidance we can take to bound budget feasible
threshold payments and give a constant approxima-
tion?

Our solution is to use another random vector d to serve
as such a guidance. (Conditions in Steps (5a) and (5b),
from a high level point of view, guarantee that the vec-
tor d is not too ‘far’ from c for the agents in S∗, in the
sense that both vectors are derived from the same dis-
tribution. Thus, cost vectors c and d are distributed
symmetrically and can be switched while preserving

456

some important parameters such as t and S∗ in expec-
tation.) If d(S∗) ≤ B (Step (6)), then we set d(i) as an
upper bound on the payment of each agent i ∈ S∗; this
guarantees that we are always within the budget con-
straint. If d(S∗) > B, setting d(i) as an upper bound
is not sufficient to ensure budget feasibility; then we
adopt our approach for XOS functions with inputs sub-
set S∗ and XOS valuation ṽ(·) defined by (♦).

Theorem 4.1. SA-Bayesian-mechanism is a universally
truthful budget feasible mechanism for subadditive functions
and gives in expectation a constant approximation.

Budget feasibility follows simply from the description of
the mechanism and the fact that XOS-mechanism-main is
budget feasible.

For universal truthfulness, we note that in the mechanism,
the sampled vector d comes from a distribution that depends
on actual bid vector c. To see why our mechanism takes a
distribution over deterministic truthful mechanisms, we can
describe all possible samples d for (i) all possible cost vectors
on T and (ii) all possible choices S ⊆ A\T of S∗; then we tell
all flipped d’s to the agents before looking at the costs of T .
(Practically, we can provide all our randomness as a black
box accessible by all agents.) Note that the selection rule
of S∗ is monotone, and, similarly to Claim 3.2, each agent
in S∗ cannot manipulate (i) the composition of S∗ given c
and T , and (ii) the choice of d, as long as he stays in S∗.
Therefore, composing the first part choosing S∗ (Step (4))
with the next monotone rule picking winners in S∗ (Steps (6-
7)), we again get a monotone winner selection rule. Hence,
the mechanism is universally truthful.

Next we give a sketch of the idea of proving the constant
approximation. Details of the proof are deferred to the full
version of the paper.

Approximation analysis (sketch). We sketch the proof idea
of the approximation ratio of the mechanism. First, similar
to our analysis in Section 3.1, the optimal solution v(opt(c, T))
obtained from random sampling in expectation gives a con-
stant approximation to the optimal solution E[opt]. Fur-
ther, we observe the following facts (which are reminiscent
of Claim 3.1):

ṽ(S)− t · c(S) ≥ 0 and ṽ(S)− t · d(S) ≥ 0, ∀S ⊆ S∗

where the second inequality is based on the conditional dis-
tribution we choose for d.

If c(S∗) ≥ B and d(S∗) ≥ B (i.e., the mechanism runs
Step (7)), we can pick a subset S0 ⊆ S∗ with B ≥ c(S0) ≥
B
2

. By Theorem 3.1, XOS-mechanism-main gives a con-
stant approximation to the optimum of ṽ(·) on S∗. (This
is the reason why in Step (7) of the mechanism, we run the
whole XOS-mechanism-main on the input instance ṽ(·) and
S∗.) Hence,

ṽ(optṽ(c, S∗)) ≥ ṽ(S0) ≥ t · c(S0) ≥ t · B
2
≥ v(opt(c, T))

16
,

where the first inequality follows from the fact that S0 ⊆ S∗
is a budget feasible set. Thus, the optimum of ṽ(·) on S∗

is within a constant factor of v(opt(c, T)), as well as the
benchmark E[opt].

If c(S∗) < B and d(S∗) ≥ B, we have ṽ(S∗) ≥ t · d(S∗) ≥
v(opt(c,T))

8
. Further, we notice that S∗ is budget feasible with

respect to cost vector c; thus, XOS-mechanism-main gives

a constant approximation to ṽ(S∗), which in turn is within
a constant factor of v(opt(c, T)) and E[opt].

We observe that the vectors d and c are restricted to the
agents in S∗ and conditioned on

S∗ ∈ argmax
S⊆A\T

{
v(S)− t · d(S)

}
and

S∗ ∈ argmax
S⊆A\T

{
v(S)− t · c(S)

}
have exactly the same distributions. Therefore, due to such
a symmetry between d and c, in a run of our mechanism
in expectation we will have the outcome T, t, S∗ and a pair
of vectors (c, d) as often as the outcome T, t, S∗ and the
pair (d, c). This implies that in the case when d(S∗) < B
and c(S∗) < B, we get on average a value of at least 1

2
v(S∗),

since (i) the winning sets on the two instances where c (resp.,
d) is the private cost and d (resp., c) is the sampled cost
altogether cover S∗, and (ii) v is a subadditive function. By
the choice of threshold t, we also know that

v(S∗) ≥ v(S∗)− t · c(S∗)
≥ v(opt(c, A \ T))− t · c(opt(c, A \ T))

≥ v(opt(c, A \ T))− t ·B.

Thus, our mechanism gives a constant approximation to
v(opt(c)) with some constant probability.

The last case is when c(S∗) ≥ B and d(S∗) < B. Again
due to the symmetry between c and d, intuitively, we can
treat this case as the above one when c and d are switched;
thus we also get a constant approximation of E[opt]. (The
formal argument, however, due to multiple randomness used
in the mechanism, is much more complicated.)

Therefore, the mechanism SA-Bayesian-mechanism on
average has a constant approximation of the expected so-
cially optimal value E[opt]. �

5. CONCLUSIONS
Our work considers budget feasible mechanism design in

two analysis frameworks: prior-free and Bayesian. For XOS
functions, we give a prior-free constant approximation mecha-
nism. For subadditive functions, we present two prior-free
mechanisms with integrality-gap and sub-logarithmic ap-
proximations, respectively, as well as a Bayesian constant
approximation mechanism. All our mechanisms are univer-
sally truthful.

Our mechanisms continue to work for the extension when
the valuation functions are non-monotone, i.e., v(S) is not
necessarily less than v(T) for any S ⊂ T ⊆ A. For instance,
the cut function studied in [20] is non-monotone. For such
functions, we can define v̂(S) = max

T⊆S
v(T) for any S ⊆ A.

It is easy to see that v̂(·) can be computed easily given a de-
mand oracle, is monotone, and inherits the classification of
v(·). Further, any solution maximizing v(·) is also an opti-
mal solution of v̂(·). Hence, we can apply our mechanisms
to v̂(·) directly and obtain the same approximations.

We give a constant approximation mechanism for subad-
ditive functions in the Bayesian framework where the costs
are drawn from a given known distribution. Considering
the gap between Bayesian and prior-free, a natural ques-
tion is under which frameworks a constant approximation
mechanism still exists. An interesting step along this di-
rection is the prior-independent setting, where the costs are

457

still drawn from an underlying distribution, but the mecha-
nism designer does not have the prior knowledge of it. Our
mechanism SA-Bayesian-mechanism can be adopted to
the framework where all the costs are identically and in-
dependently distributed. (Specifically, by random sampling
we are able to learn the underlying unknown distribution
with sufficient precision.) However, we do not know how
to handle independent but not necessarily identical distri-
butions in the prior-independent framework, as well as the
most general prior-free setting in the worst-case analysis.

Indeed, whether subadditive functions admit a prior-free
constant approximation mechanism still remains an open
problem. Our results show a separation between XOS and
subadditive functions. Another angle to have such a dis-
tinction between the two classes is from exponential con-
centration: In the case of XOS the valuation of a randomly
selected subset obeys an exponential concentration around
its expected value6, whereas in the case of general subaddi-
tive valuations it does not (see [39] for a counterexample).
Such a difference on exponential concentration may suggest
a possible distinction between XOS and subadditive func-
tions in terms of their approximability in (budget feasible)
mechanism design.

For those mechanisms with exponential runtime, it is nat-
ural to ask if there are truthful designs with the same ap-
proximations that can be implemented in polynomial time.
Further, all of our mechanisms are randomized; it is intrigu-
ing to consider the approximability of deterministic mecha-
nisms. We leave these questions as future work.

Acknowledgements
This work was supported in part by the National Basic Re-
search Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant
61033001, 61061130540, 61073174.

6. REFERENCES
[1] G. Aggarwal, J. Hartline, Knapsack Auctions, SODA 2006,

1083-1092.

[2] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, K.
Talwar: Secretary Problems: Weights and Discounts,
SODA 2009, 1245-1254.

[3] M. Babaioff, N. Immorlica, R. Kleinberg, Matroids,
Secretary Problems, and Online Mechanisms, SODA 2007,
434-443.

[4] A. Badanidiyuru, S. Dobzinski, S. Oren, Optimization with
Demand Oracles, arXiv.org/abs/1107.2869.

[5] X. Bei, Z. Huang, Bayesian Incentive Compatibility via
Fractional Assignments, SODA 2011, 720-733.

[6] A. Berger, V. Bonifaci, F. Grandoni, G. Schafer, Budgeted
Matching and Budgeted Matroid Intersection via the
Gasoline Puzzle, Math. Program., V.128, 355-372, 2011.

[7] S. Bhattacharya, G. Goel, S. Gollapudi, K. Munagala,
Budget Constrained Auctions with Heterogeneous Items,
STOC 2010, 379-388.

[8] K. Bhawalkar, T. Roughgarden, Welfare Guarantees for
Combinatorial Auctions with Item Bidding, SODA 2011,
700-709.

[9] O. Bondareva, Some Applications of Linear Programming
to Cooperative Games, Problemy Kibernetiki, V.10,
119-139, 1963.

6Note that this fact can be used to improve the approximation
ratios of the mechanisms of XOS functions substantially (but still
up to a constant factor).

[10] S. Boucheron, G. Lugosi, P. Massart. Concentration
Inequalities Using the Entropy Method, Annals of
Probability, V.31, 1583-1614, 2003.

[11] S. Chawla, J. Hartline, D. Malec, and B. Sivan,
Multi-Parameter Mechanism Design and Sequential Posted
Pricing, STOC 2010, 311-320.

[12] S. Chawla, D. Malec, A. Malekian, Bayesian Mechanism
Design for Budget-Constrained Agents, EC 2011, 253-262.

[13] S. Chawla, D. Malec, B. Sivan, The Power of Randomness
in Bayesian Optimal Mechanism Design, EC 2010,
149-158.

[14] N. Chen, N. Gravin, P. Lu, On the Approximability of
Budget Feasible Mechanisms, SODA 2011, 685-699.

[15] N. Chen, N. Gravin, P. Lu, Mechanism Design without
Money via Stable Matching, arxiv.org/abs/1104.2872.

[16] E. Clarke, Multipart Pricing of Public Goods, Public
Choice, V.11, 17-33, 1971.

[17] N. Devanur, J. Hartline, A. Karlin, T. Nguyen, A
Prior-Independent Mechanism for Profit Maximization in
Unit-demand Combinatorial Auctions, WINE 2011.

[18] P. Dhangwatnotai, T. Roughgarden, Q. Yan, Revenue
Maximization with a Single Sample, EC 2010, 129-138.

[19] S. Dobzinski, Two Randomized Mechanisms for
Combinatorial Auctions, APPROX 2007, 89-103.

[20] S. Dobzinski, C. Papadimitriou, Y. Singer, Mechanisms for
Complement Free Procurement, EC 2011, 273-282.

[21] U. Feige, On Maximizing Welfare When Utility Functions
Are Subadditive, SIAM J. Computing, V.39, 122-142, 2009.

[22] A. Ghosh, A. Roth, Selling Privacy at Auction, EC 2011,
199-208.

[23] A. Goldberg, J. Hartline, A. Karlin, M. Saks, A. Wright,
Competitive Auctions, Games and Economic Behavior,
V.55(2), 242-269, 2006.

[24] T. Groves, Incentives in Teams, Econometrica, V.41,
617-631, 1973.

[25] J. Hartline, R. Kleinberg, A. Malekian, Bayesian Incentive
Compatibility via Matchings, SODA 2011, 734-747.

[26] J. Hartline, B. Lucier, Bayesian Algorithmic Mechanism
Design, STOC 2010, 301-310.

[27] J. Hartline, T. Roughgarden, Optimal Mechanism Design
and Money Burning, STOC 2008, 75-84.

[28] J. Hartline, T. Roughgarden, Simple versus Optimal
Mechanisms, EC 2009, 225-234.

[29] B. Lehmann, D. Lehmann, N. Nisan, Combinatorial
Auctions with Decreasing Marginal Utilities, EC 2001,
18-28.

[30] P. Milgrom, Putting Auction Theory to Work, Cambridge
University Press, 2004.

[31] R. Myerson, Optimal Auction Design, Mathematics of
Operations Research, V.6(1), 1981.

[32] N. Nisan, A. Ronen, Algorithmic Mechanism Design,
STOC 1999, 129-140.

[33] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani,
Algorithmic Game Theory, Cambridge University Press,
2007.

[34] L. Shapley, On Balanced Sets and Cores, Naval Research
Logistics Quarterly, V.14, 453-460, 1967.

[35] Y. Singer, Budget Feasible Mechanisms, FOCS 2010,
765-774.

[36] C. Stone, A Course in Probability and Statistics, Duxbury
Press, 1995.

[37] M. Sviridenko, A Note on Maximizing a Submodular Set
Function Subject to Knapsack Constraint, Operations
Research Letters, V.32, 41-43, 2004.

[38] W. Vickrey, Counterspeculation, Auctions and Competitive
Sealed Tenders, Journal of Finance, V.16, 8-37, 1961.

[39] J. Vondrak, A Note on Concentration of Submodular
Functions, arxiv.org/abs/1005.2791.

458

