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Abstract

Motivated by practical concerns in the online advertising industry, we study a bidder subset selection
problem in single-item auctions. In this problem, a large pool of candidate bidders have independent values
sampled from known prior distributions. The seller needs to pick a subset of bidders and run a given
auction format on the selected subset to maximize her expected revenue. We propose two frameworks for
the subset restrictions: (i) capacity constraint on the set of selected bidders; and (ii) incurred costs for the
bidders invited to the auction. For the second-price auction with anonymous reserve (SPA-AR), we give
constant approximation polynomial time algorithms in both frameworks (in the latter framework under mild
assumptions about the market). Our results are in stark contrast to the previous work of Mehta, Nadav,
Psomas, Rubinstein [NeurIPS 2020], who showed hardness of approximation for the SPA without a reserve
price. We also give complimentary approximation results for other well-studied auction formats such as
anonymous posted pricing and sequential posted pricing. On a technical level, we find that the revenue of
SPA-AR as a set function f(S) of its bidders S is fractionally-subadditive but not submodular. Our bidder
selection problem with invitation costs is a natural question about (approximately) answering a demand oracle
for f(·) under a given vector of costs, a common computational assumption in the literature on combinatorial
auctions.
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1 Introduction

The competition among bidders and low dependency on the prior information1 are the main contributing factors
to the prevalence of auctions as selling mechanisms. An exemplary result demonstrating the importance of
competition in auctions is the seminal paper by Bullow and Klemperer [BK96]. It states that a commonly used
second-price single-item auction with only one additional bidder extracts more revenue than the optimal auction
for n i.i.d. bidders. A more recent line of work on competition complexity initiated by Eden et al. [EFF+17]
(see also [LP18, FFR18, BW19, CS21]) took the resource augmentation approach of [BK96] to the next level and
considered the question of how many more additional bidders need to join the competition in order for a simple
auction to surpass the revenue of the optimal mechanism in a variety of multi-item settings.

At a first glance it seems only beneficial for the auctioneer to have as many bidders entering the auction as
possible, as the seller’s revenue increases with more participants. However, this might not be the case in some
real-world scenarios, as there could be inherent practical constraints on how many bidders can participate in the
auction. E.g., the auction’s venue may have a fixed capacity that physically prevents too many participants, or
there could be time-scheduling conflicts for the bidders to simultaneously participate in the auction. In addition,
the seller may incur costs for inviting and accommodating bidders in the auction, which need to be factored in
when computing auctioneer’s profit.

The above concerns might appear to be moot for online and digital auctions conducted on the Internet, as
the online communication is easy, fast, and cheap. But this is in fact far from truth, as we demonstrate with a
concrete example of real-time bidding from the online advertising industry below. Note that online advertising is
a prime example of auction design applied to modern economy and serves as a major source of revenue for many
tech companies.

Real-time bidding. Most online ads are selected and displayed through real-time bidding (RTB) – each ad
slot (an impression about the advertising opportunity) is sold in real-time by an automated auction process to a
set of candidate advertisers. One might think that given the online nature of the RTB auctions, the seller could
invite and serve as many advertisers in the auction as possible. However, the issues we outlined above are even
more pronounced in the RTB context.

• Many online advertising platforms already face (or are anticipating to face in a near future) a problem of
too many advertisers participating in each online auction. It is important to keep in mind that the entire
process from initiating the auction to displaying the ad on the auctioned slot takes place in just under
a few milliseconds. Thus it is crucial for the platform to keep the communication lag and all necessary
computations under a strict time limit, which is hard to achieve with a large number of bidders. The
current practice is to keep this number under a threshold m (for example, m = 20). That is, if there are
more than m bidders, the platform would need to select a subset of m bidders first before running the
auction.

• Secondly, in recent years more and more advertisers are delegating their businesses to professional digital
marketing agencies (DMAs), who will interact with the advertising platform and perform bidding strategies
on behalf of multiple advertisers. From the advertising platform’s point of view, such practices reduce the
number of participants and make bidder capacity less of an issue. However, the platform then needs to
spend additional effort for inviting and maintaining business relations with these agencies, which would
translate into costs that need to be subtracted from the auction revenue when computing the final profit of
the platform.

In all the examples above, the auctioneer is facing a bidder selection problem. That is, how to select an
optimal subset of bidders, subject to a capacity constraint or with costs, such that the expected revenue from
running an auction with these bidders is maximized. This is the topic of our paper. More concretely, we focus
on the setting of selling a single item to multiple bidders with independent values and consider a few concrete
auction formats used in practice.

1.1 Our Contributions We formulate a new theoretical framework for auction design with bidder selections.
More formally speaking, assume that there is a large pool N of potential bidders, where each bidder i ∈ N has a

1It is known as the “Wilson doctrine”, named after the leading advocate for the independence of mechanism design from the
precise prior knowledge about the fine details of the environment.
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known prior distribution Fi. The platform selects first a set of bidders S ⊆ N , and then runs a specific auction
format for the selected bidders. We mainly focus on the second price auction with an anonymous reserve price,
which is perhaps the most relevant format in the context of online advertising. We also consider other types of
auction formats, such as anonymous pricing, sequential posted pricing, and Myerson auction. We consider the
following two bidder selection models.

Bidder selection with capacity constraints. In the first model, the platform needs to select a subset S
of no more than |S| ≤ m bidders and then run a fixed auction format to maximize its expected revenue. The
auction format we are mostly interested in is the second price auction with an anonymous reserve price r (the
price can be optimized for the set S).

A closely related question was studied before by Mehta et al. [MNPR20]. They consider the subset selection
problem for the second price auction (i.e., the reserve price r = 0) and show that it is NP-hard to approximate
within a constant ratio. Note that no reserve price requirement is most natural for another problem of social
welfare maximization (also known as k-MAX problem), which has been shown first by Chen et al. [CHL+16]
to admit a PTAS (see also [MNPR20, SS21]). For the revenue objective, there is no practical restriction for
the platform not to use a reserve price. We show that a subset of m bidders and a reserve price r can be
found in polynomial time, so that the second price auction with reserve r achieves constant approximation to the
optimum solution. This is in stark contrast to [MNPR20] whose results indicate hardness of approximation of an
apparently easier optimization problem, where the reserve price r is set to be 0. Our result easily follows from
(i) an observation that the revenue of the second price auction always lies within a constant factor of the optimal
revenue of the anonymous pricing; and (ii) that it is easy to compute the subset of agents that maximizes revenue
of the anonymous pricing mechanism.

In addition, for the sequential posted pricing mechanisms, we give a 2-approximation algorithm based on
dynamic programming.

Bidder selection with invitation costs. In the second model, each bidder i has an invitation cost ci that
the platform needs to pay in order to include this bidder in the auction. The optimization goal of the platform
is to select a subset S ⊆ N of bidders with the maximum profit margin, i.e., the expected revenue of the auction
ran on the bidder set S minus its total invitation cost

∑
i∈S ci.

In this model, we find that the revenue of the the second price auction with anonymous reserve behaves as
a fractionally subadditive function (a more general class of functions than submodular) over different subsets of
bidders. The respective optimization problem with invitation costs becomes equivalent to giving an approximate
solution to a demand oracle — a commonly used theoretical abstraction in the literature on combinatorial auctions.
We obtain a O(1 + 1

δ )-approximation for the difference objective under a mild assumption that the market is at
least δ-profitable, i.e., the revenue generated by the optimal solution is at least (1 + δ) fraction of the cost of the
optimal solution. The latter assumption certainly holds for the online advertising industry, usually with a rather
large value of δ. Our O(1 + 1

δ )-approximation result is much stronger than the typical bi-criteria approximation
guarantees obtained for submodular maximization under costs2 (see our discussion in the related works section).

We also obtain a 2-approximation result for the anonymous posted pricing mechanism. For the family of
sequential posted pricing mechanisms, interestingly, our problem is closely related to the well studied pandora
box problem.

AP AR SPP Myerson

Capacity Constraints 1
1.64

Theorem 3.2
2

Theorem 3.3
EPTAS

[SS21, MNPR20]

Invitation Costs
2

Theorem 4.1
O(1/δ)

Theorem 4.3
- -

Table 1: Summary of Results: AP denotes the anonymous pricing mechanism. AR denotes the second price
auction with anonymous reserve. SPP denotes the sequential posted pricing mechanism. Myerson denotes the
Myerson auction.

2Bi-criteria results give two constant approximation guarantees when compared to the optimal solution: one for the value of the
submodular function on the optimal set, another one for the total cost incurred by the optimal solution.
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1.2 Related Works
k-MAX Selection. A closely related setting to our work is to select k out of n random variables so that the

expected maximum value is maximized. The problem has been studied multiple times under different contexts
with different names by [CHL+16, GGM10, SS21, MNPR20]. Chen et al. [CHL+16] gave a PTAS for the probelm.
Segev and Singla [SS21] and Mehta et al. [MNPR20] improved the result to an EPTAS. As pointed out by Mehta
et al. [MNPR20], the problem has applications for search engine [BCH+03], procurement auction [Tan92, RL07],
and team selection [KR18]. In Section 2, we observe another application to Myerson’s auction with capacity
constraints.

Sequential Posted Pricing with invitation costs. We study sequential posted pricing with capacity
constraints in Theorem 3.3. For the setting with invitation costs, due to the online nature of sequential posted
pricing mechanisms, a natural implementation of the mechanism is to approach the bidders one by one and stop
once the item is sold. In other words, the set of invited bidders are adaptive, rather than a pre-selected set of
bidders. This setting is out of the scope of our bidder selection with invitation costs model. On the other hand,
it has been formalized as the online pandora’s box problem by Esfandiari et al. [EHLM19]. They reduced the
problem to the prophet inequality setting and designed constant approximation algorithms.

Submodular maximization. Our bidder selection problem is related to the line of work on submodular
maximization, where the objective is maxS:|S|≤m f(S) (in the capacity constraint setting) or maxS f(S) − c(S)
(in the cost setting, here c is a linear function) for a monotone submodular function f . In the capacity constraint
setting, a greedy algorithm can achieve 1− 1/e-approximation and this is the best possible [NWF78]. In the cost
setting, although the objective function is still submodular, the greedy algorithm is not applicable as the objective
function can have negative values. Sviridenko [SVW17] provide a (1 − 1/e, 1)-approximation algorithm for this
problem, i.e. the algorithm finds a set S with f(S) − c(S) ≥ (1 − 1/e) · f(S∗) − c(S∗), where S∗ is the optimal
solution. Note that if f(s∗)(1 − 1/e) < c(S∗), then [SVW17] does not give any approximation guarantees for
the maximization problem maxS(f(S) − c(S)) with costs. Furthermore, in general, there is no polynomial time
algorithm with approximation ration better than n1−ε for the difference objective3. Subsequently, Feldman [Fel21]
provided a guess-free algorithm and generalized the result to (1− e−β , β)-approximation for every β ∈ [0, 1]. This
is shown to be tight by Bodek and Feldman [BF22]. Recently, Lu et al. [LYG21], Sun et al. [SXZW22], and Bodek
and Feldman [BF22] generalized the result to non-monotone submodular functions f and also designed bi-criteria
approximations.

We remark that true approximation results are not achievable in the cost setting for general submodular
functions. Our theorem 4.1 on anonymous pricing mechanisms studies a specific family of XOS functions (a.k.a.
fractionally subadditive, is a super-class of submodular functions) that allows positive results. For XOS function,
in the capacity constraint setting, the problem does not admit a polynomial-time m1/2−ϵ-approximation algorithm
in the value oracle model [Sin10], but has a 2-approximation in the demand oracle model [BDO12].

2 Preliminaries

We consider a single-item auction where the seller has one item to sell to a set of bidders. Let N denote the set
of all potential bidders with |N | = n. Each bidder i ∈ N has a valuation vi for the item which is drawn from a
prior distribution Fi independently across all n bidders. All prior distributions {Fi}i∈N are known to the seller.
We use fi(p) and Fi(p) = Pr[vi ≤ p] to denote respectively the probability and cumulative density functions of
each distribution Fi.

Auction with bidder selections. The auction has two phases. In the first phase, the seller needs to select
a subset of bidders S ⊆ N to participate in the auction. In the second phase, the auction takes a vector of bidders’
values v = (vi)i∈S as the input, and decides which bidder (if any) receives the item and how much that bidder
needs to pay. In the setting with capacity constraint the auctioneer can only select a set S : |S| ≤ m with at most
m bidders. In the setting with invitation costs, there is a known vector of costs c = (ci)i∈N and no restrictions
on the subset S.

2.1 Auctions We will investigate the following types of auctions in this paper. Below, the set S ⊆ N indicates
the set of selected bidders participating in the respective auction format.

3There is an easy APX-hardness reduction for coverage valuations with linear costs to the max-independent set in a graph G on
[n] vertices, which is a folklore result for the unconstrained submodular maximization.
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Anonymous Pricing (APr): the seller puts up a take-it-or-leave price r to all bidders, and the item is sold
to any bidder whose value for the item is no less than r. Let APr(S) denote the expected revenue of the auction
with the reserve price r and bidders’ set S. Then we have

APr(S) = r · [1−
∏
i∈S

Fi(r)].

We also use AP(S) = maxr APr(S) to denote the best revenue over all possible choices of r.
Second Price Auction with Anonymous Reserve (ARr): the seller sets a reserve price r ≥ 0, and all

bidders with values below this price are discarded; the item is sold to the highest of the remaining bidders at a
price equal to the second highest agent’s value or the reserve price if none other remain. We use ARr(S) to denote
the expected revenue of the auction with reserve price r and bidders set S, and use AR(S) = maxr ARr(S) to
denote the best revenue over all possible choices of r.

When the reserve price is 0, this is the classic second-price auction. We denote its expected revenue as SPA(S).
Sequential Posted Pricing (SPP): it is defined by the bidder set S, price vector p = (pi)i∈S , and an

order/permutation π ∈ Π : S 7→ [|S|] where π(i) is the place of bidder i in the arrival sequence for each i ∈ S;
the bidders arrive one by one in the order π (i.e., in the sequence (π−1(j))j∈[|S|]), and the item is sold to the first
bidder i with vi ≥ pi.

We have three notations for the expected revenue of SPP: (a) SPP(S,p, π) for given prices p and order π;
(b) when only the order π is fixed, SPP(S, π) = maxp SPP(S,p, π) is the expected revenue of the auction with
optimal prices; (c) when the seller is free to choose both the order and the prices, SPP(S) = maxπ SPP(S, π). For
the ease of notation, we sometimes also write SPP(S,p, π) when π : N 7→ [n] is an order of all bidders in N . In
this case we assume that bidders in S arrive in the order π restricted to S.

Myerson Auction (Myerson): this is auction format that maximizes expected revenue [Mye81]; it considers

the virtual value function ϕi(v) = v − 1−Fi(v)
fi(v)

for each bidder i ∈ N ;4 the item is allocated to the bidder (if any)

with the highest non-negative virtual value max{ϕi(vi) | ϕi(vi) ≥ 0, i ∈ S}, and this bidder is charged their
threshold bid to win the auction. We let Myerson(S) to denote the expected revenue extracted from the bidder
set S.

2.2 Simple Observations

Claim 2.1. (Section 3.3.3 [Har13]) The expected revenue of the Myerson auction Myerson(S) is the same as

the expected welfare of the second price auction S̃PA(S) for the distributions (F̃i)i∈S , where F̃i : ṽi = max{ϕi(vi), 0}
with vi ∼ Fi.

This claim allows us to convert the problem about revenue maximization for the Myerson auction format to the
welfare maximization problem for the second-price auction, which has been already studied before [CHL+16,
MNPR20, SS21].

Corollary 2.1. ([CHL+16, MNPR20, SS21]) Revenue of the Myerson auction Myerson(S) as a set function
of the subset of bidders S ⊆ N is a monotone submodular function. Moreover, there is an efficient PTAS for
solving maxS⊆N :|S|≤m Myerson(S).

For the Anonymous Pricing it is convenient to fix the price r first and then analyse APr(S).

Claim 2.2. For a fixed price r, APr(S) is a monotone submodular set function of S ⊆ N .

Proof. As we have APr(S) = r · [1 −
∏

i∈S Fi(r)], the function APr(S) is monotone in S and non-negative.
Furthermore, the marginal contribution APr(S)−APr(S \ {j}) = r · (1−Fj(r)) ·

∏
i∈S\{j} Fi(r) of a bidder j ∈ S

is a decreasing function of S. Hence, APr(S) is submodular.

Furthermore, it is easy to compute the optimal set S∗ = argmaxS⊆N,|S|=m APr(S).

4If the distributions (Fi)i∈N are regular, i.e., each ϕi(v) is monotonically non decreasing in v. For irregular distributions one
should use ironed virtual functions instead (see, e.g., [Har13, Section 3.3.5] for more details).
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Claim 2.3. For a fixed price r, it is optimal to select m bidders with the highest probability of sale in {Pr[vi ≥
r]}i∈N as the solution S∗ = argmaxS⊆N,|S|=m APr(S).

Another good property of the anonymous pricing AP(S) is that it is a constant approximation to the revenue of
the second-price auction with anonymous reserve AR(S).

Claim 2.4. ([JLTX20]) For any set of bidders S ⊆ N we have 1.64 · AP(S) ≈ π2

6 AP(S) ≥ AR(S) ≥ AP(S).

3 Capacity Constraint

In this section we study the bidder selection problem with a capacity constraint. Specifically, we consider the
second price auction with anonymous reserve AR and sequential posted pricing SPP formats.

3.1 Second Price Auction with Anonymous Reserve We start by analyzing the second price auction
with anonymous reserve AR. Note than when we set the reserve price r = 0, ARr becomes the classic second price
auction SPA(without a reserve price), and our problem becomes equivalent to selectingm out of n random variables
with the objective of maximizing the expected second-highest value. This question was studied in [MNPR20] with
the following conclusion.

Theorem 3.1. ([MNPR20]) Assuming the exponential time hypothesis or the planted clique hypothesis, there is
no polynomial time algorithm that, given n random variables X1, . . . , Xn, finds a subset of size m whose expected
second largest value is a constant factor of the optimal.

This means that the optimization problem maxS:|S|≤m SPA(S) is APX-hard. However, this result does not
necessarily imply the hardness for the objective maxS:|S|≤m AR(S). In fact, as we will see below, when allowing
a positive reserve price, our objective can be effectively approximated.

We start by analyzing the property of the set function AR(S). It is known that certain families of set
functions, such as monotone submodular functions, allow for efficient approximation algorithms. As it turns out,
our function AR(S) is not submodular, but belongs to a more general class of fractionally subadditive (also known
as XOS ) functions.

Claim 3.1. Revenue of the second price auction with optimal anonymous reserve AR(S) as a set function of
the subset of bidders S ⊆ N may be not submodular, but is a monotone XOS function. Moreover, the additive
coefficients {Ai ≥ 0}i∈S in the XOS representation of AR(S) (i.e., AR(S) =

∑
i∈S Ai and ∀T ⊆ N AR(T ) ≥∑

i∈T∩S Ai) can be defined as follows

Ai = E
v-i

[pi · (1− Fi(pi))] , where pi(v-i) = max
j∈S−{i}

(vj , r
∗) is a random posted price,(3.1)

and r∗ = argmax
r∈R+

ARr(S) is the optimal reserve price in AR(S).

Proof. To see that AR(S) is not submodular, consider the following instance with n = 3 identical bidders for some
small ε > 0:

∀i ∈ [3] Fi
def
==

{
v = 1 with probability 99/100

v ∼ Uni[1, 1 + ε] with probability 1/100
.

Then for any set S ⊆ [3] the optimal reserve price r∗ in AR(S) is r∗ = 1. The revenue for a single bidder
AR1({1}) = 1; for two bidders AR1({1, 2}) = AR1({1, 3}) = 1 + 1

1002 · ε
3 , as the payment exceeds 1 only when

both bidders have values larger than 1 and the surplus (on top of 1) is equal to the revenue of SPA for two
identical and uniform Uni[0, ε] bidders; for three bidders AR1({1, 2, 3}) ≥ 1 + 3 · 99

1003 · ε
3 , as exactly 2 out

of 3 bidders have their values larger than 1 with probability 3 · 99
1003 . We get that the marginal contribution

of 2 with respect to the set {1} is smaller than its marginal contribution with respect to the set {1, 3}:
AR({1, 2})− AR({1}) = ε

3·1002 < ε·197
3·1003 ≤ AR({1, 2, 3})− AR({1, 3}).

Next we show that AR(S) is an XOS function with the respective additive coefficients {Ai}i∈S defined in
(3.1). Let us also define

(3.2) Ai(v)
def
== 1

[
vi ≥ max

j∈S-{i}
(vj , r

∗)

]
max

j∈S-{i}
(vj , r

∗), then Ai = E
v
[Ai(v)] ,
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where r∗ is the optimal reserve price in AR(S). Then we have the following (we use max2i∈S(ai) to denote the
second largest number in a set {ai}i∈S).

ARr∗(S) = E
v

[
max2
i∈S

(vi, r
∗) · 1

[
∃i ∈ S : vi ≥ r∗

]]
=

E
v

[∑
i∈S

1

[
vi ≥ max

j∈S-{i}
(vj , r

∗)

]
· max
j∈S-{i}

(vj , r
∗)

]
= E

v

[∑
i∈S

Ai(v)

]
=
∑
i∈S

Ai.

It remains to verify that AR(T ) ≥
∑

i∈T Ai for all T ⊆ S. Let ro = argmaxr ARr(T ) be the optimal price for

AR(T ) and T = S \ T . We shall use a random price r ∼ D instead of ro given by

r
def
== max

j∈T
(vj , r

∗) for a random v ∼ F.

Then

AR(T ) = ARro(T ) ≥ E
r∼D

[ARr(T )] = E
r(vT )

[
E
vT

[∑
i∈T

1

[
vi ≥ max

j∈T -{i}
(vj , r)

]
· max
j∈T -{i}

(vj , r)

]]
=

∑
i∈T

E
v

[
1

[
vi ≥ max

j∈S-{i}
(vj , r

∗)

]
· max
j∈S-{i}

(vj , r
∗)

]
=
∑
i∈T

Ai.

This concludes the proof of Claim 3.1.

From an optimization point of view, this characterization does not immediately help with our approximation
objective, as it is known that general monotone XOS functions are hard to approximate within a factor better
than m1/2 in the value oracle model [Sin10] 5. In order to obtain an efficient approximation algorithm, we take a
detour and use closely related Anonymous Pricing.

Theorem 3.2. There is a polynomial time algorithm that finds a set S∗ ⊂ N, |S∗| = m and a reserve price r∗

such that π2

6 ARr∗(S
∗) ≥ maxS⊂N,|S|=m AR(S).

Proof. By Claim 2.3 we can find an optimal set S∗ ∈ argmaxS⊆N,|S|=m AP(S) and optimal anonymous price r∗

in polynomial time by trying all possible anonymous reserve prices r. By Claim 2.4 we have

π2

6
ARr∗(S

∗) ≥ π2

6
AP(S∗) = max

S⊆N,|S|=m

π2

6
AP(S) ≥ max

S⊆N,|S|=m
AR(S),

which concludes the proof of Theorem 3.2.

3.2 Sequential Posted Pricing In this section we focus on the sequential posted pricing mechanisms (SPP).
Recall that for any subset S of bidders, SPP(S) = maxp,π SPP(S,p, π) is the optimal revenue from running a
SPP with these bidders. Our objective is to find maxS:|S|≤m SPP(S).

In the following we will show a 2-approximation algorithm for this objective. The algorithm is based on
two observations: (1) for any fixed bidder arrival order π, and for any subset of bidders S, the optimal revenue
SPP(S, π) = maxp SPP(S,p, π) is a 2-approximation to SPP(S); (2) when π is fixed, maxS:|S|≤m SPP(S, π) can
be computed efficiently by a dynamic programming algorithm.

Theorem 3.3. There is an efficient algorithm that provides a 2-approximation to the sequential posted price with
capacity constraint problem.

5Although, XOS functions do allow for efficient approximation in the demand oracle model. But a demand oracle is not easy to
implement in our setting. Section 4 has a more detailed discussion on this issue
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Proof. We first fix an arbitrary arriving order π0 = (1, 2, . . . , n) of the bidders. In the following we will show a
dynamic programming algorithm that computes maxS:|S|≤m SPP(S, π0). We let

g(i, k) = max
S⊆[i,n],|S|=k

SPP(S, π0), ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− i+ 1

denote the optimal revenue with respect to the order π0 when we are allowed to select k bidders from the set
{i, i+ 1, . . . , n}. The function g(·, ·) satisfies the following recurrent relation

g(i, k) = max

{
g(i+ 1, k), max

pi

{
pi · (1− Fi(pi)) + g(i+ 1, k − 1) · Fi(pi)

}}
.

Here we consider two options: first, not to make any price offer to i; second, offer price pi to i, in which case we
get the expected revenue of pi · (1−Fi(pi)) from i, and if i does not buy the item with probability Fi(pi), we still
can make up to k−1 offers to the remaining {i+1, . . . , n} bidders. The optimal price pi can be found by scanning
through the list of all possible prices pi.

6 This recurrence allows us to compute each g(i, k) in a backward order,
and g(1,m) is the solution to our objective.

The final piece of the proof is the fact that for any fixed set of bidders S and any order π0, we have

SPP(S, π0) = max
p

SPP(S,p, π0) ≥
1

2
max
π

max
p

SPP(S,p, π) =
1

2
SPP(S)

where the inequality is a well-known result which can be found in, e.g., [Har13, Section 4.2.2].

4 Invitation Costs

In this section we consider the setting with costs. Our main focus here will be on the second price with
anonymous reserve auction format. But before that, we present a 2-approximation result for the anonymous

pricing mechanisms. Let APC(S)
def
== maxr APr(S)−

∑
i∈S ci denote our objective function for any set of bidders

S ⊆ N . Let So be the optimal set So = argmaxS APC(S). We show in the following subsection how to compute
a set S in polynomial time so that 2APC(S) ≥ APC(So).

4.1 Anonymous Pricing We consider the problem when the price r of the anonymous pricing mechanism is

fixed, i.e. we want to maximize APCr(S)
def
== APr(S)−

∑
i∈S ci for a given r. Our main result is a 2-approximation

polynomial-time algorithm for this objective.
With a fixed price r every bidder i has two important parameters: 1) the probability that Pr[vi ≥ r]

and 2) the invitation cost ci. Let wi
def
== − ln (1−Pr[vi ≥ r]). Then APr(S) = r · Pr[∃i ∈ S, vi ≥ r] =

r ·
(
1− exp

(
−
∑

i∈S wi

))
. Our optimization problem can be written as follows.

(4.1) max
S⊆N

APCr(S) = max
S⊆N

: r ·
(
1− exp

(
−
∑

i∈S
wi

))
−
∑

i∈S
ci

A simple observation is that we only need to consider those bidders i with APCr({i}) ≥ 0. Formally, we prove
the following.

Lemma 4.1. ∀i ∈ So, we have APCr({i}) = r · (1− exp(−wi))− ci ≥ 0.

Proof. By Claim 2.2 APr is a submodular function. If there is a bidder i ∈ So with APCr({i}) < 0, then
APCr(So)−APCr(So \{i}) = APr(So)−APr(So \{i})−ci ≤ APr({i})−APr(∅)−ci = APCr({i})−APCr(∅) < 0.
I.e., APCr(So) < APCr(So \ {i}) – a contradiction.

From now on, we may assume without loss of generality that every bidder i ∈ [n] satisfies APCr({i}) ≥ 0.
We study the following natural fractional relaxation of (4.1) similar to the fractional relaxation of the knapsack
problem:

(4.2) max
x∈[0,1]n

: r ·
(
1− exp

(
−
∑

i∈[n]
wi · xi

))
−
∑

i∈[n]
ci · xi

6If Fi is a continuous distribution supported on an interval [A,B] (0 < A < B) we can find an (1 + ε) approximation to all g(i, k)
by discretizing the possible price pi as multiples of ε

n
).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3795

D
ow

nl
oa

de
d 

03
/1

4/
23

 to
 1

17
.1

44
.9

0.
79

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Integrality Gap. We would like to remark that the integrality gap of the above optimization problem can
be arbitrarily large even when there is only 1 bidder. E.g., consider the function h(x) = 1 − e−w·x − (1 − ε) · x
for w > 1. Then when w goes to infinity, max{h(0), h(1)} = ε − e−w → ε, while maxx∈[0,1] h(x) ≥ h(1/w) =
1 − 1/e − 1/w → 1 − 1/e. On the positive side, we have the unbounded integrality gap only when there is a
bidder i with the corresponding non-monotone in x ∈ [0, 1] function hi(x) = r · (1− e−wi·x)− ci · x (equivalently,

h′(1) = r · e−wi · wi − ci < 0). We call such bidders special. Let T
def
== {i ∈ [n] | r · exp(−wi) · wi < ci} be the set

of special bidders. The next lemma shows that the optimal solution to (4.1) has at most one special bidder.

Lemma 4.2. The optimal set of bidders satisfies that |So ∩ T | ≤ 1.

Proof. Assume towards a contradiction that there are two different bidders j, k ∈ So ∩ T . Then

(4.3) wj ≥ exp(−wk) · (exp(wj)− 1) or wk ≥ exp(−wj) · (exp(wk)− 1),

as otherwise wj · wk < (1 − exp(−wj)) · (1 − exp(−wj)), contradicting the fact that wj > 1 − exp(−wj) and
wk > 1− exp(−wk). Without loss of generality, we assume the first inequality of (4.3) holds. Then, we have

APCr(So \ j) = r ·

(
1− exp

(
−
∑
i∈So

wi + wj

))
−
∑
i∈So

ci + cj > r ·

(
1− exp

(
−
∑
i∈So

wi + wj

))

−
∑
i∈So

ci + r · exp(−wj) · wj ≥ r ·

(
1− exp

(
−
∑
i∈So

wi + wj

))
−
∑
i∈So

ci + r · exp(−wk) · (1− exp(−wj))

≥ r ·

(
1− exp

(
−
∑
i∈So

wi + wj

))
−
∑
i∈So

ci + r · (1− exp(−wj)) · exp

(
−
∑
i∈So

wi + wj

)
= APCr(So),

contradicting the optimality of So. Here, the first inequality holds as j ∈ T and by the definition of T ; the second
inequality holds by (4.3).

According to the above lemma, we can enumerate all possible choices of a bidder t ∈ T∩So and ignore all other
bidders in T in the fractional relaxation (4.2). This allows us to get a slight variation of (4.2) with a bounded
integrality gap. Specifically, we consider the following fractional relaxation (4.4), where the extra parameter
q ∈ [0, 1] corresponds to the event of selecting the bidder t in advance and the optimization is restricted to a

subset of bidders S
def
== N \ T

(4.4) FR(S, q) : max
x∈[0,1]S

r ·

(
1− q · exp

(
−
∑
i∈S

wi · xi

))
−
∑
i∈S

ci · xi

Note that the objective function in (4.4) is concave in x. By checking local maximum conditions for the optimal
solution x∗ to FR(S, q), it is easy to see that almost the same as the standard greedy algorithm for the fractional
knapsack problem finds x∗ (see the description of the algorithm below). Similar to the fractional knapsack problem
there is at most one fractional bidder in x∗.

1. Sort the bidders in S in the ascending order of wi/ci.

2. For i from 1 to |S|: continuously increase xi until xi = 1 or r · q · wi · exp(−
∑

j≤i wi · xi) = ci.

Finally, we provide our algorithm for approximating (4.1).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3796

D
ow

nl
oa

de
d 

03
/1

4/
23

 to
 1

17
.1

44
.9

0.
79

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1. For each t ∈ T , solve FR([n] \ T, exp(−wt)) greedily and denote the optimal value and solution by
FR∗(t) and x∗(t) respectively. Let S∗(t) = {i | x∗

i (t) = 1} ∪ {t}.

2. Solve FR([n] \ T, 1) greedily and denote the optimal value and solution by FR∗(0) and x∗(0)
respectively. Let S∗(0) = {i | x∗

i (0) = 1}.

3. Let i∗ = argmaxi APCr({i}).

Return the best solution among {i∗}, S∗(0) and S∗(t) for t ∈ T .

Theorem 4.1. The above algorithm provides a 2-approximation to the anonymous pricing with invitation costs
problem.

Proof. For arbitrary t ∈ T ∪ {0}, there exists at most 1 item i(t) with fractional value, i.e. xi(t) ∈ (0, 1). Since
i(t) ∈ [n] \ T , we must have

(4.5) ci(t) ≤ r · exp(−wi(t)) · wi(t) ≤ r · exp(−wi(t)) ·
exp(wi(t) · (1− x∗

i(t)))− 1

1− x∗
i(t)

,

where the second inequality holds since ex − 1 ≥ x for x ≥ 0. Consequently,

FR∗(t)− APCr(S
∗(t)) = r · exp

(
−
∑

j∈S∗(t)
wj

)
· (1− exp(−wi(t) · x∗

i(t)))− ci(t) · x∗
i(t)

≤ r · (1− exp(−wi(t) · x∗
i(t)))− ci(t) · x∗

i(t) ≤ r · (1− exp(−wi(t)))− ci(t) = APCr({i(t)}) ≤ APCr({i∗}),

where the second inequality is equivalent to (4.5). Finally, we conclude the proof of the theorem by Lemma 4.2
and the above inequality: APCr(So) ≤ maxt∈T∪{0} FR

∗(t) and

max
t∈T∪{0}

FR∗(t) ≤ max
t∈T∪{0}

(APCr(S
∗(t)) + APCr(i

∗)) ≤ APCr({i∗}) + max
t∈T∪{0}

APCr(S
∗(t)) .

Which concludes the proof of the Theorem 4.1.

For completeness, we consider the decision version of the anonymous pricing with costs and prove its NP-
hardness. Given n bidders each with value distribution Fi and cost ci, and a number R, the question is to decide
whether there exists a subset S of bidders such that APC(S) ≥ R.

Theorem 4.2. The decision version of anonymous pricing with costs problem is NP-hard.

Proof. We consider the subset-sum problem and reduce it to our problem. Given an instance I =
({w1, w2, ..., wn},W ) for the subset-sum problem, the question is to decide whether a subset of {w1, ..., wn}
sums to exactly W . We construct the following instance for the anonymous pricing with invitation costs problem
with n bidders. The value distribution of each bidder i is a Bernoulli random variable: vi = 1 with probability
1− e−wi and vi = 0 otherwise. The invitation cost of bidder i is ci = e−W ·wi. It is easy to observe that for any
subset S of bidders, the optimal anonymous pricing mechanism should set the price to be 1, i.e.

APC(S) = max
r

AP(S)−
∑
i∈S

ci = AP1(S)−
∑
i∈S

ci = 1− e−
∑

i∈S wi − e−W ·
∑
i∈S

wi, ∀S ⊆ [n] .

Let h(x)
def
== 1− e−x − e−W · x. Notice that h′(x) = e−x − e−W . The function h(x) achieves its maximum value

of 1 − e−W − e−W · W at x = W . Therefore, to solve the subset-sum instance I, it suffices to decide whether
maxS g(S) ≥ 1− e−W − e−W ·W . Due to the NP-hardness of the subset-sum problem, we conclude the proof of
the theorem.
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4.2 Second Price auction with Anonymous Reserve. Here we study the problem of maximizing the
revenue of the second price auction with anonymous reserve minus the invitation cost, i.e., our objective is

max
S⊆N

ARC(S), where ARC(S) = AR(S)−
∑
i∈S

ci.

We have already seen in Section 3 that anonymous pricing maxr APr(S
∗) gives a computationally efficient proxy

with good approximation to AR(S∗). This was good enough to achieve a constant approximation for the setting
with capacity constraint, but the difference objective makes the problem much more challenging. Indeed, for a
general submodular function f (and our function f belongs to a more general class of XOS functions) the best
we can hope for is a bi-criteria approximation of AR(S) and c(S) =

∑
i∈S ci. The difficulty of approximating the

difference objective becomes quite apparent in the regime where AR(S) is only slightly larger than
∑

i∈S ci, in
which case any approximation f(S∗) of AR(S∗) must be accurate up to 1 + ε factor. Thus the naive substitution
of the function AR(S∗) with a constant approximation AP(S∗) does not work in the cost setting. Still there is a
hope that APC(S) = AP(S)−

∑
i∈S ci might be useful in approximating ARC(S∗) for a different set S ̸= S∗.

On the positive side, we give the following approximation result parameterised by δ when the optimal solution
AR(S∗) has a δ-surplus over the cost c(S∗), i.e., when AR(S∗) ≥ (1 + δ)

∑
i∈S∗ ci.

Theorem 4.3. Let S∗ be the optimum solution to maxS ARC(S) = maxS
(
AR(S)−

∑
i∈S ci

)
. Suppose S∗

satisfies a δ-surplus condition AR(S∗) ≥ (1+δ)
∑

i∈S∗ ci. Then there is a set of bidders S with O
(
1+δ
δ

)
APC(S) ≥

ARC(S∗).

Proof. We use the probabilistic method to show existence of such set S. The idea is to randomly partition set S∗

into ℓ = O( 1δ ) disjoint groups and then show that the combined revenues of the best anonymous pricing for each
set in the partition almost cover AR(S∗). Specifically, we assign each bidder i ∈ S∗ independently at random to
one of the [ℓ] groups and will use a carefully chosen random price for each set in the random partition to obtain
the desired bound. Let r∗ = argmaxr ARr(S

∗) be the optimal reserve price. We have the following lower bound
on the sum of revenues for anonymous pricing applied to a random partition of S∗.

(4.6) E
R1,...,Rℓ⊔
j Rj=S∗

 ℓ∑
j=1

AP(Rj)

 ≥ E
R1,...,Rℓ⊔
j Rj=S∗

E
v

 ℓ∑
j=1

rj(v)=maxk∈S∗−Rj
(vk,r

∗)︷ ︸︸ ︷
APrj(v)(Rj)


 =

E
R1,...,Rℓ⊔
j Rj=S∗

E
v

∑
i∈S∗

ℓ∑
j=1

1

[
i ∈ Rj

]
· 1
[
vi ≥ max

k∈S∗−Rj

(vk, r
∗)

]
· 1

[
i = argmax

k∈Rj

vk

]
· rj(v)

 ≥

E
v

∑
i∈S∗

1

[
i = argmax

k∈S∗
vk, vi ≥ r∗

]
E

R1,...,Rℓ⊔
j Rj=S∗

 ℓ∑
j=1

1

[
i ∈ Rj

]
· rj(v)


 ≥

E
v

[∑
i∈S∗

1

[
i = argmax

k∈S∗
vk, vi ≥ r∗

]
· ℓ− 1

ℓ
max2
k∈S∗

(vk, r
∗)

]
=

ℓ− 1

ℓ
ARr∗(S

∗),

where to get the first inequality we simply changed the optimal price of each set Rj to a specific random price
rj(v) = maxk∈S∗−Rj

(vk, r
∗); in the first equality we used that each vi in v has the same distribution Fi as in

APrj(v), and also charged the price rj(v) to the top bidder i ∈ Rj (we assume that argmax returns a single
number, say the smallest in a lexicographic ordering, in case of a tie); to get the second inequality we rearranged
the order of summations and expectations and observed that only the top bidder i ∈ S∗ can be charged the price
rj(v) (in fact, this inequality is equality when the chance that more than one bidder has the top value is 0); to
get the third inequality we observe that with probability ℓ−1

ℓ the top bidder i ∈ Rj and the 2-nd highest bidder
are assigned to different groups of the partition (R1, . . . , Rℓ) (in this case rj(v) = max2k∈S∗(vk, r

∗) is the same
as the payment in the second price auction with anonymous reserve r∗ for the set of bidders S∗).
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Now, we set ℓ = ⌈ 2(1+δ)
δ ⌉. Then by (4.6) there must exists a partitioning of S∗ into R1, . . . , Rℓ such that

(4.7)

ℓ∑
j=1

AP(Rj) ≥
(
1− 1

ℓ

)
ARr∗(S

∗) ≥
(
1− δ

2(1 + δ)

)
AP(S∗).

Finally, we get the following by summing all APC(Rj) = AP(Rj)−
∑

i∈Rj
ci.

ℓ∑
j=1

APC(Rj) =

ℓ∑
j=1

AP(Rj)−
∑
i∈S∗

ci ≥
(
1− δ

2(1 + δ)

)
AR(S∗)−

∑
i∈S∗

ci

=
1

2

(
AR(S∗)−

∑
i∈S∗

ci

)
+

1

2
· AR(S

∗)

1 + δ
− 1

2
·
∑
i∈S∗

ci ≥
1

2

(
AR(S∗)−

∑
i∈S∗

ci

)
=

ARC(S∗)

2
,

where the first inequality follows from (4.7); the second inequality holds, as AR(S∗) ≥ (1+δ)
∑

i∈S∗ ci. Therefore,

for one of j ∈ [ℓ] we have APC(Rj) ≥ ARC(S∗)
2ℓ = O( 1+δ

δ )ARC(S∗).

Theorem 4.3 coupled with the computationally efficient method for finding a set T with 2 · APC(T ) ≥ APC(S)
from Section 4.1 gives us the following.

Corollary 4.1. Let S∗ be the optimum set of bidders for second price auction with anonymous reserve
S∗ = argmaxS ARC(S). Suppose S∗ satisfies a δ-surplus condition AR(S∗) ≥ (1 + δ)

∑
i∈S∗ ci. Then there is

polynomial time algorithm that finds a set of bidders S and a price r such that anonymous pricing for set S gets
a surplus O

(
1+δ
δ

)
APC(S) ≥ ARC(S∗).

On the negative side, when the generated revenue AR(S∗) = (1 + δ)
∑

i∈S∗ ci is close to the total cost, the
anonymous pricing may not approximate well ARC(S∗) for any subset S ⊆ N .

Theorem 4.4. There exists a set of n i.i.d. bidders, such that the optimal profit achieved by anonymous pricing

mechanism is at most O
(

1√
n

)
portion of the optimal profit achieved by second price auction with anonymous

reserve. I.e.,

max
S

APC(S) ≤ O

(
1√
n

)
·max

S
ARC(S)

Proof. We define n auxiliary functions: Gi(v)
def
==

(
1− i+1

v

) 1
i · 1 [v ∈ [i+ 1,∞)] ∀i ∈ [n]. Consider the following

instance of n i.i.d. bidders with valuation distributions F (v)
def
== maxi∈[n] Gi(v) and invitation costs of c = 1

per bidder. Note that the bidders are identical as they are i.i.d. and have the same cost. We slightly abuse
notations and use AP(i),AR(i) to denote the revenue of anonymous pricing and the revenue of second price
auction with anonymous reserve for i bidders, also use APC(i),ARC(i) to denote the corresponding surplus for i
bidders respectively.

We first give an upper bound of AP(i):

AP(i) = r · (1− (F (r))i) ≤ r · (1− (Gi(r))
i) ≤ i+ 1 .

Consequently, we have maxi APC(i) = maxi (AP(i)− i) ≤ maxi(i+ 1− i) = 1. We calculate next the revenue of
the second price auction for n bidders:

AR0(n) = n ·
∫
v≥2

v · (1− F (v)) dFn−1(v),

where, we interpret the second price auction as n disjoint posted price mechanisms to each of n bidders; the price
is random and is equal to the maximum among the other n− 1 bids.

Claim 4.1. For i ∈ N and v ≥ i+ 1, we have
(
1− 1

v − 1
e·v3/2

)i ≥ 1− i+1
v .
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Proof. The inequality for i = 1 is equivalent to 1
v ≥ 1

e·v3/2 and holds trivially for v ≥ 2. For i ≥ 2, consider

function h(y)
def
== (1− y)i −

(
1− i · y + i(i−1)

2e2 · y2
)
. Observe that for y ∈ [0, 2

i ],

h′(y) = −i · (1− y)i−1 + i− i(i− 1)

e2
y = iy ·

(
(1− y) + (1− y)2 + · · ·+ (1− y)i−2 − i− 1

e2

)
≥ iy ·

(
(i− 1) ·

(
1− 2

i

)i−2

− i− 1

e2

)
= i(i− 1)y ·

((
1− 2

i

)i−2

− 1

e2

)
≥ 0 .

Consequently h(y) ≥ h(0) = 0 for y ∈ [0, 2
i ]. Applying the inequality to y = 1

v + 1
e·v3/2 , we have

(
1− 1

v
− 1

e · v3/2

)i

≥

(
1− i ·

(
1

v
+

1

e · v3/2

)
+

i(i− 1)

2e2
·
(
1

v
+

1

e · v3/2

)2
)

≥ 1− i

v
− i

e · v3/2
+

i2

4e2
· 1

v2
= 1− i+ 1

v
+

1

v

(
i

2e · v1/2
− 1

)2

≥ 1− i+ 1

v
.

This concludes the proof of the Claim.

According to the claim, we have that

v · (1− F (v)) = v ·
(
1− max

i≤v−1
Gi(v)

)
≥ v ·

(
1

v
+

1

e · v3/2

)
.

Therefore,

AR0(n) = n ·
∫
v≥2

v · (1− F (v))dFn−1(v) ≥ n ·
∫
v≥2

(
1 +

1

e · v1/2

)
dFn−1(v)

≥ n ·

(
1 +

1

e
·
∫
v∈[2,n]

1√
n
dFn−1(v)

)
= n+

√
n

e
· Fn−1(n)

≥ n+

√
n

e
·max

i
(Gi(n))

n−1· ≥ n+

√
n

e
· (1−

√
n+ 1

n
)

1√
n = n+Ω(

√
n).

We conclude the proof of the theorem by noticing that maxi ARC(i) ≥ ARC(n) ≥ AR0(n) − n ≥ Ω(
√
n), while

maxi APC(i) = 1.

5 Conclusion

In this work we proposed two theoretical models for studying a practical problem of bidder selection in various
simple auction formats. We obtained good approximation results for anonymous pricing, and found that
anonymous pricing serves as a good proxy for other auction formats such as second-price auction with anonymous
reserve. We obtained generally good theoretical understanding for the model with capacity constraint. However,
there are still a number of open questions left in the model with invitation costs: a) if there is a PTAS, or
APX hardness for anonymous posted pricing; b) whether it is possible to get a constant approximation for the
maxS ARC(S) without large profit margin assumption; c) whether it is possible to obtain a constant approximation
for the second price auction with the welfare objective (or revenue for the Myerson auction).

There are a few future research direction that might be useful for practical applications. To name a few, i)
study bi-criteria optimization trade-offs between the revenue and welfare objectives; ii) we assumed that bidders’
distributions are perfectly known to the seller, which is not always true in practice. Analyse sample complexity
of the subset selection problem, or study the problem in an online learning framework. iii) From an engineering
view point it is useful to have advice guided by theory about various heuristics algorithms. One approach that
seem reasonable for the bidder selection problem and might be interesting from a theoretical point of view is local
search algorithm. How fast it converges? What approximation guarantees can we have for the local optima?
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