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Abstract

We give the first deterministic fully polynomial-time approx-

imation scheme (FPTAS) for computing the partition func-

tion of a two-state spin system on an arbitrary graph, when

the parameters of the system satisfy the uniqueness condi-

tion on infinite regular trees. This condition is of physical

significance and is believed to be the right boundary between

approximable and inapproximable.

The FPTAS is based on the correlation decay technique

introduced by Bandyopadhyay and Gamarnik [1] and Weitz

[61]. The classic correlation decay is defined with respect

to graph distance. Although this definition has natural

physical meanings, it does not directly support an FPTAS

for systems on arbitrary graphs, because for graphs with

unbounded degrees, the local computation that provides a

desirable precision by correlation decay may take super-

polynomial time. We introduce a notion of computationally

efficient correlation decay, in which the correlation decay is

measured in a refined metric instead of graph distance. We

use a potential method to analyze the amortized behavior of

this correlation decay and establish a correlation decay that

guarantees an inverse-polynomial precision by polynomial-

time local computation. This gives us an FPTAS for spin

systems on arbitrary graphs. This new notion of correlation

decay properly reflects the algorithmic aspect of the spin

systems, and may be used for designing FPTAS for other

counting problems.

1 Introduction

Spin systems are well studied in Statistical Physics.
We focus on two-state spin systems. An instance of
a spin system is a graph G = (V,E). A configuration
σ : V → {0, 1} assigns every vertex one of the two
states. We shall refer the two states as blue and green.
The contributions of local interactions between adjacent
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vertices are quantified by a matrix

A =

[
A0,0 A0,1

A1,0 A1,1

]
=

[
β 1
1 γ

]
,

where β, γ ≥ 0. The weight of an assignment is
the production of contributions of all local interactions
and the partition function ZA(G) of a system is the
summation of the weights over all possible assignments.
Formally,

ZA(G) =
∑
σ∈2V

∏
(u,v)∈E

Aσ(u),σ(v).

Although originated from Statistical Physics, the spin
system is also accepted in Computer Science as a
framework for counting problems. Considering the two
very well studied frameworks, the weighted Constraint
Satisfaction Problems (#CSP) [14, 7, 16, 6, 12, 20, 11]
and Graph Homomorphisms [18, 8, 28, 36, 10, 9], the
two-state spin systems can be viewed as the most
basic setting in these frameworks: A Boolean #CSP
problem with one symmetric binary relation; or Graph
Homomorphisms to graph with two vertices. Many
natural combinatorial problems can be formulated as
two-state spin systems. For example, with β = 0 and
γ = 1, ZA(G) is the number of independent sets (or
vertex covers) of the graph G.

Given a matrix A, it is a computational problem
to compute ZA(G) where graph G is given as input.
We want to characterize the computational complexity
of computing ZA(G) in terms of β and γ. For exact
computation of ZA(G), polynomial time algorithms are
known only for the very restricted settings that βγ = 1
or (β, γ) = (0, 0), and for all other settings the problem
is proved to be #P-Hard [8]. We consider the approx-
imation of ZA(G), with the fully polynomial-time ap-
proximation schemes (FPTAS) and its randomized re-
laxation the fully polynomial-time randomized approx-
imation schemes (FPRAS).

In a seminal paper [48], Jerrum and Sinclair gave an
FPRAS when β = γ > 1, which was further extended
to the entire region βγ > 1 [41]. For 0 ≤ β, γ ≤ 1
except that (β, γ) = (0, 0) or (1, 1), Goldberg, Jerrum
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and Paterson prove that the problem do not admit an
FPRAS unless NP=RP [41]. For the other values of
the parameters, namely, 0 ≤ β < 1 < γ < 1

β or

symmetrically 0 ≤ γ < 1 < β < 1
γ , the approximability

of ZA(G) is not very well understood. It was shown
in [41] that by coupling a simple heat-bath random
walk, there exists an additional region of β and γ
which admit some FPRAS. The true characterization
of approximability is still left open.

Within this unknown region, there lies a critical
curve with physical significance, called the uniqueness
threshold. The phase transition of Gibbs measure oc-
curs at this threshold curve. Such statistical physics
phase transitions are believed to coincide with the tran-
sitions of computational complexity. However, there are
only very few examples where the connection is rigor-
ously proved. One example is the hardcore (counting
independent set) model. It was conjectured in [56] by
Mossel, Weitz and Wormald, and settled in a line of
works by Dyer, Frieze and Jerrum [24], Weitz [61], Sly
[58], and very recently Galanis, Ge, Štefankovič, Vigoda
and Yang [31] that in the hardcore model the uniqueness
threshold essentially characterizes the approximability
of the partition function. It will be very interesting to
observe the similar transition in spin systems.

1.1 Main results We extend the approximable re-
gion (in terms of β and γ) of ZA(G) to the uniqueness
threshold in two-state spin systems, which is believed to
be the right boundary between approximable and inap-
proximable. Specifically, we formulate a criterion for β
and γ such that there is a unique Gibbs measure on all
infinite regular trees1, and prove that there is an FPTAS
for computing ZA(G) when this uniqueness condition
is satisfied. This improves the approximable boundary
(dashed lines in Figure 1) provided by the heat-bath
random walk in [41]. Moreover, the algorithm is deter-
ministic.

The FPTAS is based on the correlation decay tech-
nique first used in [61, 1] for approximate counting. We
elaborate a bit on the ideas. A spin system induces a
natural probability distribution over all configurations
called the Gibbs measure where the probability of a
configuration is proportional to its weight. Due to a
standard self-reduction procedure, computing ZA(G) is
reduced to computing the marginal distribution of the
state of one vertex, which is made plausible by Weitz
in [61] with the self-avoiding walk (SAW) tree construc-
tion. For efficiency of computation, the marginal dis-

1Technically, there is a small integrality gap caused by the
continuous generalization of the condition. The formal statement
is given in the following section.
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Figure 1: Our FPTAS works for the region between the
critical curve of the uniqueness threshold and the curve
βγ = 1. The heat-bath random walk in [41] works for
the region between the dashed line and βγ = 1.

tribution of a vertex is estimated using only a local
neighborhood around the vertex. To justify the pre-
cision of the estimation, we show that far-away vertices
have little influence on the marginal distribution. This
is done by analyzing the rate with which the correlation
between two vertices decays as they are far away from
each other.

The correlation decay by itself is a phenomenon of
physical significance. One of our main discoveries is that
two-state spin systems on any graphs have exponential
correlation decay when the above uniqueness condition
is satisfied.

1.2 Technical contributions The technique of us-
ing correlation decay to design FPTAS for partition
functions is developed in the hardcore model. We in-
troduce several new ideas to adapt the challenges aris-
ing from spin systems. We believe these challenges are
typical in counting problems, and the new ideas will
make the correlation decay technique more applicable
for approximate counting.

1. The correlation decay technique used in [61] relies
on a monotonicity property specific to the hardcore
model. Correlation decays in graphs are reduced
via this monotonicity to the decays in infinite
regular trees, while the later have solvable phase
transition thresholds. It was already observed
in [61] that such monotonicity may not generally
hold for other models. Indeed, it does not hold
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for spin systems. We develop a more general
method which does not rely on monotonicity: We
directly compute the correlation decay in arbitrary
trees (and as a result in arbitrary graphs via the
SAW tree reduction), and use the potential method
to analyze the amortized behavior of correlation
decay.

2. To have an FPTAS, the marginal distribution of a
single vertex should be approximable up to certain
precision from a local neighborhood of polynomial
size. The classic correlation decay is measured with
respect to graph distance. The local neighborhoods
in this sense are balls in the graph metric. A
SAW tree enumerates all paths originating from a
vertex. For graphs of unbounded degrees, the SAW
tree transformation may have the balls offering
desirable precisions explode to super-polynomial
sizes.

We introduce the notion of computationally effi-
cient correlation decay. Correlation decay is now
measured in a refined metric, which has the ad-
vantage that a desirable precision is achievable by
a ball (in the new metric) of polynomial size even
after the SAW tree transformation. We prove an
exponential correlation decay in this new metric
when the uniqueness is satisfied. As a result, we
have an FPTAS for arbitrary graphs as long as the
uniqueness condition holds.

1.3 Related works The approximation for parti-
tion function has been extensively studied with both
positive [48, 50, 39, 19, 29, 47, 60] and negative re-
sults [38, 5, 56, 37, 13, 33, 3, 32]. Some special prob-
lems in these framework are well studied combinatorial
problems, e.g. counting independent sets [24, 29, 53]
and graph coloring [54, 47, 45, 21, 23, 43, 22, 44, 46,
30, 55, 60, 4, 40]. Some dichotomies (or trichotomies)
of complexity for approximate counting CSP were also
obtained [27, 25, 31, 58]. Almost all known approxi-
mation counting algorithms are based on random sam-
pling [51, 26], usually through the famous Markov Chain
Monte Carlo (MCMC) method [17, 49]. There are
very few deterministic approximation algorithms for
any counting problems. Some notable examples in-
clude [1, 34, 2, 42, 59].

In a very recent work [57], Sinclair, Srivastava, and
Thurley give an FPTAS using correlation decay for the
two-state spin systems on bounded degree graphs for
a region of β and γ for which the approximation of
partition function is previously known to be hard on
general graphs.

2 Definitions and Statements of Results

A spin system is described by a graph G = (V,E). A
configuration of the system is one of the 2|V | possible
assignments σ : V → {0, 1} of states to vertices. We also
use two colors blue and green to denote these two states.

Let A =

[
A0,0 A0,1

A1,0 A1,1

]
=

[
β 1
1 γ

]
, where β, γ ≥ 0. The

Gibbs measure is a distribution over all configurations
defined by

µ(σ) =
1

ZA(G)

∏
(u,v)∈E

Aσ(u),σ(v).

The normalizing factor

ZA(G) =
∑
σ∈2V

∏
(u,v)∈E

Aσ(u),σ(v)

is called the partition function.
From this distribution, we can define the marginal

probability pv of v to be colored blue. Let σΛ be a
configuration defined on vertices in Λ ⊂ V . We call
vertices v ∈ Λ fixed vertices, and v ̸∈ Λ free vertices.
We use pσΛ

v to denote the marginal probability of v to
be colored blue conditioned on the configuration of Λ
being fixed as σΛ.

Definition 2.1. A spin system on a family of graphs
is said to have exponential correlation decay if for any
graph G = (V,E) in the family, any v ∈ V,Λ ⊂ V and
σΛ, τΛ ∈ {0, 1}Λ,

|pσΛ
v − pτΛv | ≤ exp(−Ω(dist(v,∆))).

where ∆ ⊂ Λ is the subset on which σΛ and τΛ differ,
and dist(v,∆) is the shortest distance from v to any
vertex in ∆.

This definition is equivalent to the “strong spatial
mixing” in [61] with an exponential rate. It is stronger
than the standard notion of exponential correlation
decay in Statistical Physics [15], where the decay is
measured with respect to dist(v,Λ) instead of dist(v,∆).

The marginal probability pσΛ
v in a tree can be

computed by the following recursion. Let T be a
tree rooted by v. We denote RσΛ

T as the ratio of the
probabilities that root v is blue and green, respectively,
when imposing the condition σΛ. Formally, RσΛ

T =
p
σΛ
v

1−p
σΛ
v

(when pσΛ
v = 1, let RσΛ

v = ∞ by convention).

Suppose that the root of T has d children. Let Ti be
the subtree rooted by the i-th child of the root. The
distributions on distinct subtrees are independent. A
calculation then gives that

(2.1) RσΛ

T =
d∏

i=1

βRσΛ

Ti
+ 1

RσΛ

Ti
+ γ

.
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It is of physical significance to study the Gibbs
measures on infinite (d+1)-regular trees T̂d [35]. In T̂d,

the recursion is of a symmetric form f(x) =
(

βx+1
x+γ

)d
.

There may be more than one Gibbs measures on infinite
graphs. We say that the system has the uniqueness if
there is exact one Gibbs measure. Let x̂ = f(x̂) be the
fixed point of f(x). It is known [52, 54] that the spin

system on T̂d undergoes a phase transition at |f ′(x̂)| = 1

with uniqueness when |f ′(x̂)| = d(1−βγ)(βx̂+1)d−1

(x̂+γ)d+1 ≤ 1.

This motivates the following definition

Γ(β) = inf

{
γ ≥ 1

∣∣∣∣∣ d(1−βγ)(βx̂+1)d−1

(x̂+γ)d+1 ≤ 1

for all d ≥ 1

}
.

For a fixed 0 ≤ β < 1, the Γ(β) gives the boundary

that all infinite regular trees T̂d exhibit uniqueness when
Γ(β) ≤ γ ≤ 1

β . We call Γ(β) the uniqueness threshold .

Indeed, for any d ≥ 1, there is a critical Γd(β) such

that T̂d exhibits uniqueness when Γd(β) < γ < 1
β .

Furthermore, there is a finite crucial D > 1 such that
ΓD(β) = Γ(β). That is, T̂D has the highest uniqueness

threshold Γ(β) among all T̂d.
We remark that for technical reasons, we treat d

as real numbers thus Γ(β) is slightly greater than the
one defined by integer ds. An integer version of Γ(β) is
given in Section 6, where a slightly improved and tight
analysis is given for the specially case β = 0.

Definition 2.2. A fully polynomial-time approxima-
tion scheme (FPTAS) for ZA(G) is an algorithm that
given as input an instance G and an ϵ > 0, outputs a
number Z in time poly(|G|, 1

ϵ ) such that (1−ϵ)ZA(G) ≤
Z ≤ (1 + ϵ)ZA(G).

In Definition 2.1, the correlation decay is measured
in graph distance. In order to support an FPTAS for
graphs with unbounded degrees, we need to define the
following refined metric.

Definition 2.3. Let T be a rooted tree and M ≥ 2 be
a constant. We define the M -based depth LM (v) of a
vertex v in T recursively as follows: LM (v) = 0 if v is
the root of T ; and for every child u of v, if v has d ≥ 1
children, LM (u) = LM (v) + ⌈logM (d+ 1)⌉.

If every vertex in T has d < M children, LM (v) is
precisely the depth of v. If there are vertices having d ≥
M children, we actually replace every such vertex and
its d children with anM -ary tree of depth ⌈logM (d+1)⌉,
and LM (v) is the depth of v in this new tree.

Definition 2.4. Let T be a rooted tree and M ≥ 2 be
a constant. Let BM (L) = {v ∈ T | LM (v) ≤ L}, called

an M -based L-ball, be the set of vertices in T whose
M -based depths are no greater than L; and let B∗

M (L),
called an M -based L-closed-ball, be the set of vertices
in BM (L) and all their children in T .

The main technical result of the paper is the fol-
lowing theorem which establishes an exponential corre-
lation decay in the refined metric when the uniqueness
condition holds.

Theorem 2.1. (Computationally Efficient Cor-
relation Decay) Let 0 ≤ β < 1, βγ < 1, and
γ > Γ(β). There exists a sufficiently large constant M
which depends only on β and γ, such that on an arbi-
trary tree T , for any two configurations σΛ and τΛ which
differ on ∆ ⊂ Λ, if B∗

M (L) ∩∆ = ∅ then

|RσΛ

T −RτΛ
T | ≤ exp(−Ω(L)).

The name computationally efficient correlation de-
cay is due to the fact that |BM (L)| ≤ ML in any tree,
thus an exponential decay would imply a polynomial-
size BM (L) giving an inverse-polynomial precision.

Theorem 2.1 has the following implications via
Weitz’s self-avoiding tree construction [61].

Theorem 2.2. Let 0 ≤ β < 1, βγ < 1 , γ > Γ(β). It is
of exponential correlation decay for the Gibbs measure
on any graph.

Theorem 2.3. Let 0 ≤ β < 1, βγ < 1 , γ > Γ(β).
There is an FPTAS for computing the partition function
ZA(G) for arbitrary graph G.

By symmetry, in Theorem 2.1, 2.2, and 2.3, the roles
of β and γ can be switched.

In the Section 3, we will show the FPTAS implied
by Theorem 2.1, followed by a formal treatment of the
uniqueness threshold in Section 4, and finally the formal
proof of Theorem 2.1 in Section 5.

3 An FPTAS for the Partition Function

Assuming that Theorem 2.1 is true, we show that when
0 ≤ β < 1 and Γ(β) < γ < 1

β , there is an FPTAS

for the partition function ZA(G) for arbitrary graph
G. The FPTAS is based on approximation of RσΛ

G,v =
pσΛ
v /(1 − pσΛ

v ), the ratio between the probabilities that
v is blue and green, respectively, when imposing the
condition σΛ.

The self-avoiding walk tree is introduced by Weitz
in [61] for calculating RσΛ

G,v. Given a graph G = (V,E),
we fix an arbitrary order < of vertices. Originating
from any vertex v ∈ V , a self-avoiding walk tree,
denoted TSAW(G, v), is constructed as follows. Every
vertex in TSAW(G, v) corresponds to one of the walks

925 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



v1 → v2 → · · · → vk in G such that v1 = v, all edges
are distinct and v1, . . . , vk−1 are distinct, i.e. the self-
avoiding walks originating from v and those appended
with a vertex closing a cycle. The root of TSAW(G, v)
corresponds to the trivial walk v. The vertex v1 parents
v2 in TSAW(G, v), if and only if their respective walks w1

and w2 satisfy that w2 = w1 → u for some u. For a leaf
of TSAW(G, v) whose walk closes a cycle, supposed that
the cycle is u→ v1 → · · · vk → u, fix the leaf to be blue
if v1 > vk and green otherwise. When a configuration
σΛ is imposed on Λ ⊂ V of the original graph G,
for any vertex of TSAW(G, v) whose corresponding walk
ends at a u ∈ Λ, the color of the vertex is fixed to be
σΛ(u). We abuse the notation and denote the resulting
configuration on TSAW(G, v) by σΛ as well.

This novel tree construction has the advantage that
the probabilities are exactly the same in both the
original spin system and the constructed tree.

Theorem 3.1. (Weitz [61]) Let T = TSAW(G, v). It
holds that RσΛ

G,v = RσΛ

T

Due to (2.1), in a tree T , the following recursion
holds for RσΛ

T :

RσΛ

T =
d∏

i=1

βRσΛ

Ti
+ 1

RσΛ

Ti
+ γ

.

The base case is either when the current root v ∈ Λ,
i.e. v’s color is fixed, in which case RσΛ

T =∞ or RσΛ

T = 0
(depending on whether v is fixed to be blue or green),
or when v is free and has no children, in which case
RσΛ

T = 1 (this is consistent with the recursion since the
outcome of an empty product is 1 by convention).

For βγ < 1, the recursion is monotonically decreas-
ing with respect to every RσΛ

Ti
. An upper (lower) bound

of RσΛ

T can be computed by replacing RσΛ

Ti
in the re-

cursion by their respective lower (upper) bounds. Al-
gorithm 1 computes the lower or upper bound of RσΛ

T

up to vertices in M -based L-closed ball B∗
M (L). For

the vertices outside B∗
M (L), it uses the trivial bounds

0 ≤ R ≤ ∞.
Due to the monotonicity of the recursion, it holds

that

R(T, σΛ, L, 0, true) ≤ RσΛ

T ≤ R(T, σΛ, L, 0, false).

Note that the naive lower bound 0 (or the upper bound
∞) of R for a vertex outside B∗

M (L) can be achieved by
fixing the vertex to be green (or blue). Denote by τ0
and τ1 the configurations achieving the lower and upper
bounds respectively. It is easy to see that τ0 = τ1 = σΛ

in B∗
M (L). Then due to Theorem 2.1, there is a constant

Algorithm 1: Estimate RσΛ

T based on B∗
M (L)

R(Tv, σΛ, L, dparent, lb):
Input: Rooted tree Tv; configuration σΛ;

M -based depth L; parent degree dparent;
Boolean indicator lb of lower bound.

Output: Lower (or upper) bound of RσΛ

T

computed from vertices in B∗
M (L).

begin
Suppose root v has d children and let Ti be
the subtree rooted by the i-th child;
if v ∈ Λ then

if σΛ(v) = blue then return ∞;
else return 0;

else if L < 0 then
if lb = true then return 0;
else return ∞;

else
L′ ←− L− ⌈logM (dparent + 1)⌉;
return

∏d
i=1

βR(Ti,σΛ,L′,d,¬lb)+1
R(Ti,σΛ,L′,d,¬lb)+γ ;

α < 1 such that

|R(T, σΛ, L, 0, false)−R(T, σΛ, L, 0, true)|
= |Rτ1

T −Rτ0
T |

= O(αL).

To compute RσΛ

G,v for an arbitrary graph G, we
first construct the B∗

M (L) of T = TSAW(G, v), and run
Algorithm 1. Due to Theorem 3.1, RσΛ

G,v = RσΛ

T , thus
it returns R0 and R1 such that R0 ≤ RσΛ

G,v ≤ R1 and

R1−R0 = O(αL). Since pσΛ
v = RσΛ

G,v/(1+RσΛ

G,v), we can

output p0 = R0

R0+1 and p1 = R1

R1+1 so that p0 ≤ pσΛ
v ≤ p1

and p1 − p0 = R1

R1+1 −
R0

R0+1 ≤ R1 −R0 = O(αL).
The running time of this algorithm relies on the

size of B∗
M (L) in TSAW(G, v). The maximum degree

of TSAW(G, v) is bounded by the maximum degree of
G, which is trivially bounded by n, thus |B∗

M (L)| ≤
n|BM (L)| ≤ nML. The running time of the algorithm
is O(|B∗

M (L)|) = O(nML).
By setting L = logα ϵ, we can approximate 1− pσΛ

v

within absolute error O(ϵ) in time O(n · poly( 1ϵ )). For
β < 1 < γ, it holds that 0 < RσΛ

G,v < 1 for free v thus

1−pσΛ
v > 1

2 , therefore the above procedure approximates
(1− pσΛ

v ) within factor (1±O(ϵ)). We have an FPTAS
for (1− pσΛ

v ).
The partition function ZA(G) can be computed

from pσΛ
v by the following standard routine. Let

v1, . . . , vn enumerate the vertices in G, and let σi, i =
0, 1, . . . , n, be the configurations fixing the first i ver-
tices v1, . . . , vi to be green, where σ0 means all vertices
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are free. The probability measure of σn (all green) can
be computed as

µ(σn) =
n∏

i=1

Pr[vi is green | v1, . . . , vi−1 are green]

=
n∏

i=1

(1− pσi−1
vi ).

On the other hand, it is easy to see that µ(σn) =
γ|E|

ZA(G)

by definition of µ. Thus

ZA(G) =
γ|E|

µ(σn)
=

γ|E|∏n
i=1(1− p

σi−1
vi )

.

Notice that γ|E| > 1. Therefore, an FPTAS for (1−pσΛ
v )

implies an FPTAS for ZA(G).

4 The uniqueness threshold

In this section, we formally define the uniqueness thresh-
old Γ(β) and the critical D. We also prove several
propositions regarding these quantities which are use-
ful for the analysis of the correlation decay.

Definition 4.1. Let 0 ≤ β < 1 be a fixed parameter.
Suppose that 1 ≤ γ < 1

β and d ≥ 1. Let x(γ, d) be the
positive solution of

x =

(
βx+ 1

x+ γ

)d

.(4.2)

Define that f(x) =
(

βx+1
x+γ

)d
. Then x(γ, d) is the

positive fixed point of f(x). For γ < 1
β , f(x) =(

β + 1−βγ
x+γ

)d
is continuous and strictly decreasing over

x ∈ [0,∞), and it holds that f(0) = 1
γd > 0 and

f(1) =
(

1+β
1+γ

)d
< 1

γd ≤ 1, thus f(x) has a unique fixed

point over x ∈ (0, 1). Therefore, for 1 ≤ γ < 1
β and

d ≥ 1, x(γ, d) is well defined and x(γ, d) ∈ (0, 1).

Definition 4.2. Let

Γ(β) = inf

{
γ ≥ 1

∣∣∣∣∣ ∀d ≥ 1, d(1−βγ)(βx+1)d−1

(x+γ)d+1 ≤ 1

where x = x(γ, d)

}
.

We write Γ = Γ(β) for short if no ambiguity is caused.

Note that Γ can be equivalently defined as

Γ = inf

{
γ ≥ 1

∣∣∣∣∣ ∀d ≥ 1, d(1−βγ)x
(βx+1)(x+γ) ≤ 1

where x = x(γ, d)

}
,

because x(γ, d) satisfies (4.2).
The following lemma states that for 0 ≤ β < 1,

Γ(β) is well-defined and nontrivial.

Lemma 4.1. If 0 ≤ β < 1, then 1 < Γ(β) < 1
β .

Proof. We first show that Γ > 1. It is sufficient to
show that if γ ≤ 1 then there exists a d such that

d(1−βγ)x
(βx+1)(x+γ) > 1, where x satisfies that x =

(
βx+1
x+γ

)d
.

By contradiction, suppose that γ ≤ 1 and for all d ≥
1, d(1−βγ)x

(βx+1)(x+γ) ≤ 1 where x satisfies that x =
(

βx+1
x+γ

)d
.

Then,

1 ≥ d(1− βγ)x

(βx+ 1)(x+ γ)

=
d(1− βγ)

βx+ γ
x + (1 + βγ)

≥ d(1− βγ)

βx+ γ
x + 2

.

Specifically, suppose that d is sufficiently large so
the following inequalities hold:

βd exp

(
d

(1− βγ)d− 3

)
<

d(1− βγ)− 3

β
, and

exp

(
− γd

d(1− βγ)− 3

)
>

γ

d(1− βγ)− 3
.

Case.1: x ≥ γ. Then γ
x ≤ 1. Thus,

1 ≥ d(1− βγ)

βx+ γ
x + 2

≥ d(1− βγ)

βx+ 3
,

which implies that x ≥ d(1−βγ)−3
β . On the other

hand,

x =

(
βx+ 1

x+ γ

)d

≤
(
βx+ 1

x

)d

≤
(
β +

β

d(1− βγ)− 3

)d

≤ βd exp

(
d

(1− βγ)d− 3

)
<

d(1− βγ)− 3

β
,

a contradiction.

Case.2: x < γ. Then βx ≤ βγ < 1. Thus,

1 ≥ d(1− βγ)

βx+ γ
x + 2

≥ d(1− βγ)
γ
x + 3

,
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which implies that x ≤ γ
d(1−βγ)−3 . On the other

hand,

x =

(
βx+ 1

x+ γ

)d

≥ 1

(x+ 1)d

≥
(
1 +

γ

d(1− βγ)− 3

)−d

≥ exp

(
− γd

d(1− βγ)− 3

)
>

γ

d(1− βγ)− 3
,

a contradiction.

We proceed to show that Γ < 1
β . It is sufficient

to show that there exists a 1 < γ < 1
β such that

for all d ≥ 1, d(1−βγ)x
(βx+1)(x+γ) ≤ 1, where x satisfies that

x =
(

βx+1
x+γ

)d
.

If β = 0, then x =
(

1
x+γ

)d
≤ 1

γd . Thus,

d(1− βγ)x

(βx+ 1)(x+ γ)
=

dx

x+ γ
≤ dx ≤ d

γd
≤ 1

e ln γ
,

where the last inequality can be verified by taking the
maximum of d

γd over d. Therefore, setting γ = e
1
e , it

holds that d(1−βγ)x
(βx+1)(x+γ) ≤

1
e ln γ = 1.

On the other hand, if 0 < β < 1, choosing an ar-
bitrary constant α ∈ (exp(−1−β

e ), 1) which also satis-

fies that α ∈ (β, 1), and assuming γ ∈
[
1−(α−β)

β , 1
β

)
⊆

(1, 1
β ), we have

x =

(
β +

1− βγ

x+ γ

)d

≤ (β + 1− βγ)
d

≤ αd.

Thus,

d(1− βγ)x

(βx+ 1)(x+ γ)
≤ d(1− βγ)x

≤ (1− βγ)dαd

≤ (1− βγ)

−e lnα
,

where the last inequality is also proved by taking the
maximum of dαd. Therefore, we can choose

γ = max

{
1− (α− β)

β
,
1

β
− e ln(1/α)

β

}
,

which indeed satisfies that γ ∈ (1, 1
β ), to guarantee that

d(1−βγ)x
(βx+1)(x+γ) ≤

(1−βγ)
−e lnα ≤ 1.

Therefore, for 0 ≤ β < 1, there always exists a
1 < γ < 1

β such that for all d ≥ 1, it holds that

d(1−βγ)x
(βx+1)(x+γ) ≤ 1, where x satisfies that x =

(
βx+1
x+γ

)d
.

This implies Γ < 1
β .

Definition 4.3. Let γ(d) be the solution γ of

d(1− βγ)x(γ, d)

(βx(γ, d) + 1)(x(γ, d) + γ)
= 1(4.3)

over γ ∈ (1, 1
β ), and define γ(d) = 1 by convention if

such solution does not exist.

The following lemma states that γ(d) is well-defined and
captures the uniqueness threshold for different instances
of d.

Lemma 4.2. The followings hold for γ(d):

1. γ(d) is a well-defined function for d ≥ 1.

2. Γ = supd≥1 γ(d).

3. There exists a finite constant D > 1 such that
Γ = γ(D), and D is a stationary point of γ(d),

i.e. d γ
d d

∣∣∣
d=D

= 0.

Proof. 1. We first show that for any d ≥ 1, there exists
at most one γ ∈ (1, 1

β ) satisfying (4.3), which will

imply that γ(d) is well-defined.

Observe that for any fixed d ≥ 1, x(γ, d) is
strictly decreasing with respect to γ over γ ∈
(1, 1

β ). By contradiction, assume that for some
d ≥ 1, x is non-decreasing over γ. Then x =(

βx+1
x+γ

)d
=
(
β + 1−βγ

x+γ

)d
is strictly decreasing over

γ, a contradiction.

Therefore, 1−βγ
x(γ,d)+γ must be strictly decreasing

with respect to γ, or otherwise x =
(
β + 1−βγ

x+γ

)d
would have been non-decreasing, contradicting that
x(γ, d) is strictly decreasing.

Combining these together, we have that

d(1− βγ)x(γ, d)

(βx(γ, d) + 1)(x(γ, d) + γ)

=
d(1− βγ)

x(γ, d) + γ
· 1

β + 1
x(γ,d)

is strictly decreasing over γ ∈ (1, 1
β ). Thus, there

exists at most one γ ∈ (1, 1
β ) satisfying (4.3).

Therefore, γ(d) is well-defined.
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2. We then show that Γ = supd≥1 γ(d). For any d ≥ 1,
let

Γd(β) = inf

{
γ ≥ 1

∣∣∣∣∣ d(1−βγ)x
(βx+1)(x+γ) ≤ 1

where x = (γ, d)

}
.

Note that for any d ≥ 1, it holds that

lim
γ→ 1

β

d(1− βγ)x(γ, d)

(βx(γ, d) + 1)(x(γ, d) + γ)
= 0 < 1,

thus we have Γd(β) <
1
β . In addition to that, since

d(1−βγ)x(γ,d)
(βx(γ,d)+1)(x(γ,d)+γ) is strictly decreasing over γ ∈
(1, 1

β ), Γd(β) is either equal to the unique solution γ

of d(1−βγ)x(γ,d)
(βx(γ,d)+1)(x(γ,d)+γ) = 1 over γ ∈ (0, 1

β ) or equal

to 1 if such solution does not exist. Therefore,

Γd(β) = γ(d).

Since d(1−βγ)x(γ,d)
(βx(γ,d)+1)(x(γ,d)+γ) is strictly decreasing over

γ ∈ (1, 1
β ), for any γ ∈ (1, 1

β ) that γ ≥ Γd(β) for all

d ≥ 1, it holds that d(1−βγ)x(γ,d)
(βx(γ,d)+1)(x(γ,d)+γ) ≤ 1 for all

d ≥ 1, i.e. γ ≥ Γ(β). Thus, Γ(β) ≤ supd≥1 Γd(β).
The other direction Γ(β) ≥ supd≥1 Γd(β) is univer-
sal. Therefore,

Γ(β) = sup
d≥1

Γd(β) = sup
d≥1

γ(d).

3. We show that there is a finite D > 1 that γ(D) =
supd≥1 γ(d).

First notice that D > 1. By contradiction assume
that D = 1. Substituting x in (1 − βγ)x = (βx +

1)(x+ γ) with the positive solution of x =
(

βx+1
x+γ

)
gives us a γ < 1. Then by conventional definition,
γ(D) = 1. From the previous analysis, we know
that γ(D) = supd≥1 γ(d) = Γ and due to Lemma
4.1, Γ > 1. A contradiction.

We treat x = x(γ(d), d) as a single-variate function
of d. We claim that x → 0 as d → ∞. By
contradiction, if x is bounded away from 0 by a
constant as d→∞, then

x =

(
β +

1− βγ

x+ γ

)d

≤
(
β +

1− β

x+ 1

)d

,

which approaches 0 as d→∞, a contradiction.

Therefore, when d → ∞, it must hold that γ(d) >
1, because if otherwise γ ≤ 1, since x → 0 as

d → ∞, it holds that x =
(

βx+1
x+γ

)d
→ 1

γd , which

approaches either 1 or ∞ as d→∞, contradicting
that x→ 0 as d→∞.

We just show that γ(d) > 1 for sufficiently large d,
which means that for these ds, γ(d) is defined by
(4.3) instead of defined by the convention γ(d) = 1.
Thus, for sufficiently large d, x = x(γ(d), d) and
γ = γ(d) can be treated as single-variate functions
of d satisfying both (4.2) and (4.3).

For βγ < 1, it holds that x =
(

βx+1
x+γ

)d
≤ 1

γd , thus

d

γd
≥ d(1− βγ)

γd

≥ d(1− βγ)x

= (βx+ 1)(x+ γ)

≥ γ,

where the equality holds by (4.3). Thus, γ(d) ≤
d

1
d+1 .

Recall that γ(d) > 1 for all sufficiently large d, thus
there is a finite d such that γ(d) is bounded from
below by a constant greater than 1. On the other

hand, γ(d) ≤ d
1

d+1 = 1 as d→∞. Therefore, there
is a finite D such that γ(D) = supd≥1 γ(d). Due to
Lemma 4.2, this implies γ(D) = Γ.

Since γ(D) = supd≥1 γ(d) and D is neither infinite
nor equal to 1, D must be a stationary point of

γ(d), i.e. d γ
d d

∣∣∣
d=D

= 0.

We can then define the crucial D at which point the
highest uniqueness threshold Γ is obtained.

Definition 4.4. Let D be the value satisfying γ(D) =
Γ. Let X = x(Γ, D).

It is obvious that both (4.2) and (4.3) hold for γ = Γ,
d = D, and x = X. Two less obvious but very useful
identities are given in the following lemma.

Lemma 4.3. The followings hold for Γ, D and X.

1. β
Γ ≤
√
βΓ < D−1

D+1 ;

2. ln
(

βX+1
X+Γ

)
= 2(βX+1)

(D+1)(βX+1)−2D

= 2D(1−βΓ)X
(βX+1)(2DX−(D+1)(X+Γ)) .

Proof. 1. Since γ = Γ, d = D, and x = X satisfies
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(4.3), it holds that

D(1− βΓ) =
(βX + 1)(X + Γ)

X

=

(
βX +

Γ

X

)
+ βΓ + 1

≥ 2
√
βΓ + βΓ + 1

=
(
1 +

√
βΓ
)2

,

where the inequality is due to the inequality of
arithmetic and geometric means. Thus, D ≥
1+

√
βΓ

1−
√
βΓ

. Therefore,

D − 1

D + 1
= 1− 2

D + 1
≥
√
βΓ ≥ β

Γ
,

where the last inequality is implied trivially by that
0 ≤ β < 1 and Γ > 1.

2. Recall that X = x(Γ, D) and Γ = γ(D), where
x(γ, d) is defined by (4.2), and γ(d) is defined by
(4.3). Thus, x = x(γ(d), d) and γ = γ(d) can be
treated as single-variate functions of d satisfying
both (4.2) and (4.3).

The following identity is implied by (4.3):

d(1− βγ)x = (βx+ 1)(x+ γ).(4.4)

Taking the derivatives with respect to d at d = D
for both sides of (4.4), we have

(1− βγ)x|d=D

=

(
(β(x+ γ) + (βx+ 1)− d(1− βγ))

dx

d d

+(βx(d+ 1) + 1)
d γ

d d

)∣∣∣∣
d=D

.

Due to Lemma 4.2, it holds that d γ
d d

∣∣∣
d=D

= 0. Then

dx

d d

∣∣∣∣
d=D

=
(1− βΓ)X

β(X + Γ) + (βX + 1)−D(1− βΓ)

=
(1− βΓ)X2

β(X + Γ)X + (βX + 1)X − (βX + 1)(X + Γ)

=
(1− βΓ)X2

βX2 − Γ
,

where the second equation is due to (4.4). Thus,
we have that

dx

d d

∣∣∣∣
d=D

=
(1− βΓ)X2

βX2 − Γ
(4.5)

Recall that x(γ, d) is defined by (4.2). Applying
logarithm to both side of (4.2), we have

lnx = d ln

(
βx+ 1

x+ γ

)
.

Taking the partial derivatives with respect to d for
both sides,

1

x

∂x

∂d
=

βd

(βx+ 1)
· ∂x
∂d
− d

(x+ γ)
· ∂x
∂d

+ ln

(
βx+ 1

x+ γ

)
.

which implies that

∂x

∂d
=

x(βx+ 1)(x+ γ) ln
(

βx+1
x+γ

)
(βx+ 1)(x+ γ) + d(1− βγ)x

=
x(βx+ 1)(x+ γ) ln

(
βx+1
x+γ

)
(βx+ 1)(x+ γ) + (βx+ 1)(x+ γ)

=
x

2
ln

(
βx+ 1

x+ γ

)
,

where the second equation is due to (4.4).

Due to the total derivative formula, and that
d γ
d d

∣∣∣
d=D

= 0,

dx

d d

∣∣∣∣
d=D

=
∂x(γ, d)

∂γ
· d γ(d)

d d

∣∣∣∣
d=D

+
∂x(γ, d)

∂d

∣∣∣∣
d=D

= 0 +
∂x(γ, d)

∂d

∣∣∣∣
d=D

=
X

2
ln

(
βX + 1

X + Γ

)
.

Combining with (4.5), we have

ln

(
βX + 1

X + Γ

)
=

2(1− βΓ)X

βX2 − Γ

The equations in the lemma are consequences of
the above equation. Specifically,

2(1− βΓ)X

βX2 − Γ

=
2D(1− βΓ)X

D(βX − 1)(X + Γ) +D(1− βΓ)X

=
2(βX + 1)(X + Γ)

D(βX − 1)(X + Γ) + (βX + 1)(X + Γ)

=
2(βX + 1)

(D + 1)(βX + 1)− 2D
,
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where the second equation is due to (4.4); and

2(1− βΓ)X

βX2 − Γ

=
2D(1− βΓ)X

D(βX + 1)(X − Γ)−D(1− βΓ)X

=
2D(1− βΓ)X

D(βX + 1)(X − Γ)− (βX + 1)(X + Γ)

=
2D(1− βΓ)X

(βX + 1)(2DX − (D + 1)(X + Γ))
,

where the second equation is due to (4.4).

5 Computationally Efficient Correlation Decay

We prove Theorem 2.1, justifying the computationally
efficient correlation decay.

We use Rv and Rv + δv to respectively denote the
lower and upper bounds of RσΛ

T where T is rooted by v.
For fixed vertices v ∈ B∗

M (L), set Rv = ∞ if v is blue
(and Rv = 0 if v is green) and δ = 0. For all free vertices
v ∈ B∗

M (L), supposed that v has d1 children fixed to be
blue, d0 children fixed to be green, and d free children
v1, . . . , vd, the recursion (2.1) gives that

Rv + δv =
βd1

γd0

d∏
i=1

βRvi + 1

Rvi + γ
(5.6)

Rv =
βd1

γd0

d∏
i=1

β(Rvi + δvi) + 1

Rvi + δvi + γ
.

And for all vertices v ̸∈ B∗
M (L), we use the naive bounds

that Rv = 0 and δv =∞.
Since γ > Γ > 1 > β ≥ 0, the range of the

recursion is (0, 1] as long as the inputs are positive.
Thus for all free vertices v ∈ B∗

M (L), it holds that
0 < Rv ≤ Rv + δv ≤ 1.

Due to the monotonicity of the recursion, denoted
by r the root of the tree, Rr and Rr + δr are lower and
upper bounds respectively for all RτΛ

T where τΛ = σΛ

in B∗
M (L). Theorem 2.1 is then implied by that δr ≤

exp(−Ω(L)).
Denote that

f(x1, . . . , xd) =
βd1

γd0

d∏
i=1

βxi + 1

xi + γ
.

Then the recursions (5.6) can be written as that

Rv + δv = f(Rv1 , . . . , Rvd
)(5.7)

Rv = f(Rv1 + δv1 , . . . , Rvd + δvd).

Due to the Mean Value Theorem, there exist R̃i ∈

[Rvi , Rvi + δvi ], 1 ≤ i ≤ d, such that

δv = f(Rv1 , . . . , Rvd
)− f(Rv1 + δv1 , . . . , Rvd + δvd)

= −∇f(R̃1, . . . , R̃d) · (δv1 , . . . , δvd)

=
βd1

γd0
(1− βγ) ·

d∏
i=1

βR̃i + 1

R̃i + γ

·
d∑

i=1

δvi

(βR̃i + 1)(R̃i + γ)
.

A straightforward estimation gives that

δv
max1≤i≤d{δvi}

≤ βd1

γd0
(1− βγ) ·

d∏
i=1

βR̃i + 1

R̃i + γ

·
d∑

i=1

1

(βR̃i + 1)(R̃i + γ)
.

If this ratio is bounded by a constant less than 1, then
the gap δ shrinks by a constant factor for each step of
recursion, thus an exponential decay would have been
established. However, such a step-wise guarantee of
decay holds in general only when the γ is substantially
greater than Γ(β). A simulation shows that when γ
is sufficiently close to Γ(β), the gap δ may indeed
increase for some specific d and Ri. We then apply an
amortized analysis to show that even though the gap δ
may occasionally increase, it decays exponentially in a
long run.

5.1 Amortized analysis of correlation decay We
use the potential method to analyze the amortized
behavior of correlation decay. The potential function
is defined as

Φ(R) = R
D+1
2D (βR+ 1),

where D is the crucial d which generates the highest
uniqueness threshold as formally defined in Section 4

We will analyze the decay rate of δ
Φ instead of δ.

This is done by introducing a monotone function φ(R),
which is implicitly defined by its derivative φ′(R) =

1
Φ(R) . We denote that

yv = φ(Rv) and yv + ϵv = φ(Rv + δv).

Due to (5.7),

yv = φ(Rv) = φ (f(Rv1 + δv1 , . . . , Rvd + δvd))

= φ
(
f(φ−1(yv1 + ϵv1), . . . , φ

−1(yvd + ϵvd
))
)
;

yv + ϵv = φ(Rv + δv) = φ (f(Rv1 , . . . , Rvd))

= φ
(
f(φ−1(yv1), . . . , φ

−1(yvd
))
)
.
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By the Mean Value Theorem, there exists an R̃ ∈
[Rv, Rv + δv] such that

ϵv = φ(Rv + δv)− φ(Rv)(5.8)

= δv · φ′(R̃)

=
δv

Φ(R̃)
.

Similarly, by the Mean Value Theorem, there exist
R̃i ∈ [Rvi , Rvi + δvi ], 1 ≤ i ≤ d, such that

ϵv = φ (f(Rv1 , . . . , Rvd
))(5.9)

− φ (f(Rv1 + δv1 , . . . , Rvd
+ δvd

))

= −∇φ
(
f(R̃1, . . . , R̃d)

)
· (δv1 , . . . , δvd

)

= (1− βγ) ·

(
βd1

γd0

∏d
i=1

βR̃i+1

R̃i+γ

)D−1
2D

β βd1

γd0

∏d
i=1

βR̃i+1

R̃i+γ
+ 1

·
d∑

i=1

δvi

(βR̃i + 1)(R̃i + γ)

≤ d

γ(d0+d1+d)D−1
2D

,

where (5.9) is trivially implied by that R̃i ∈ (0, 1], γ > 1
and βγ < 1. By the Mean Value Theorem, there exist
ỹi ∈ [yvi , yvi + ϵvi ] and due to the monotonicity of φ(·),
corresponding R̃i ∈ [Rvi , Rvi + δvi ] that ỹi = φ(R̃i),
1 ≤ i ≤ d, such that

ϵv = φ
(
f(φ−1(y1), . . . , φ

−1(yd))
)

(5.10)

− φ
(
f(φ−1(y1 + ϵ1), . . . , φ

−1(yd + ϵd))
)

= −∇φ
(
f(φ−1(ỹ1), . . . , φ

−1(ỹd))
)

· (ϵ1, . . . , ϵd)

=
(1− βγ)

(
βd1

γd0

∏d
i=1

βR̃i+1

R̃i+γ

)D−1
2D

β βd1

γd0

∏d
i=1

βR̃i+1

R̃i+γ
+ 1

·
d∑

i=1

R̃i

D+1
2D · ϵvi

R̃i + γ

≤ max
1≤i≤d

{ϵvi} ·

 d∑
i=1

R̃i

D+1
2D

R̃i + γ



·
(1− βγ)

(
βd1

γd0

∏d
i=1

βR̃i+1

R̃i+γ

)D−1
2D

β βd1

γd0

∏d
i=1

βR̃i+1

R̃i+γ
+ 1

.

Since R̃i ∈ (0, 1], γ > 1, and βγ < 1, (5.10) trivially

implies that

ϵv ≤ max
1≤i≤d

{ϵvi} · d

(
βd0

γd1

d∏
i=1

βR̃i + 1

R̃i + γ

)D−1
2D

(5.11)

≤ d

γ(d0+d1+d)D−1
2D

· max
1≤i≤d

{ϵvi},

On the other hand, we know that β ≤
√
βΓ < D−1

D+1
(due to Lemma 4.3 in Section 4). It is easy to verify

that function x
D−1
2D

βx+1 is monotonically increasing when

x ≤ 1. Then the following is also implied by (5.10):

ϵv ≤ α(d; R̃1, . . . , R̃d) · max
1≤i≤d

{ϵvi}.(5.12)

where the function α(d;x1, . . . , xd) captures the amor-
tized decay, defined as

α(d;x1, . . . , xd)(5.13)

=
(1− βγ)

(∏d
i=1

βxi+1
xi+γ

)D−1
2D

β
∏d

i=1
βxi+1
xi+γ + 1

·
d∑

i=1

x
D+1
2D

i

xi + γ
.

Our goal is to upper bound the α(d;x1, . . . , xd)
assuming the uniqueness condition. A concave analysis
reduces the upper bound to the symmetric cases that
all xi are equal.

Lemma 5.1. Let 0 ≤ β < 1, γ > Γ(β), and βγ < 1.
Then for any d ≥ 1 and any x1, . . . , xd ∈ (0, 1],
there exists an x ∈ (0, 1], such that α(d;x1, . . . , xd) is
maximized when all xi = x.

Proof. We denote yi = ln(βxi+1
xi+γ ), then xi =

1−βγ
eyi−β − γ

and

α(d;x1, . . . , xd) =
(1− βγ) exp

(
D−1
2D

∑d
i=1 yi

)
β exp

(∑d
i=1 yi

)
+ 1

·
d∑

i=1

(
1−βγ
eyi−β − γ

)D+1
2D

1−βγ
eyi−β

=
exp

(
D−1
2D

∑d
i=1 yi

)
β exp

(∑d
i=1 yi

)
+ 1
·

d∑
i=1

f(yi),

where f(y) =
(

1−βγ
ey−β − γ

)D+1
2D

(ey − β).

It holds that

f ′(y) = ey
(
1− βγ

ey − β
− γ

)D+1
2D

(
1 +

D+1
2D (1− βγ)

γey − 1

)
,

f ′′(y) =
ey
(

1−βγ
ey−β − γ

)D+1
2D

4D2(ey − β)(γey − 1)2
· g(y,D),
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where

g(y,D) = ey(βγ − 1)2 − 2(1− βγ)(ey − β)(1− γey)D

− (2β + 2β2γ − ey(1 + 10βγ + β2γ2)

+ 6γe2y(1 + βγ)− 4γe3y)D2.

The fact ey ∈ (β, 1
γ ) implies that the sign of f ′′(y) is

the same as that of g(y,D). In the follow, we show
that g(y,D) is always negative. The coefficient of D
in g(y) is obviously negative given that ey ∈ (β, 1

γ ).

Now we show that the coefficient of D2 in g(y) is also
negative. To show this, the condition ey ∈ (β, 1

γ ) is not

sufficient. We substitute yi = ln(βxi+1
xi+γ ) back and recall

that xi ∈ (0, 1), we have

2β + 2β2γ − ey(1 + 10βγ + β2γ2)

+ 6γe2y(1 + βγ)− 4γe3y

=
(βγ − 1)2

(γ + x)3
· (γ2 − x2 + γ(1− βγ)x

+ 3γx+ 4βγx2 + βx3)

> 0.

Since both the coefficients ofD andD2 are negative,
we can choose D = 1, in which case,

f ′′(y) = −γey < 0.

Denote that ȳ = 1
d

∑d
i=1 yi. Due to the Jensen’s

Inequality,
∑d

i=1 f(yi) ≤ df(ȳ). Therefore,

α(d;x1, . . . , xd) =
exp

(
D−1
2D

∑d
i=1 yi

)
β exp

(∑d
i=1 yi

)
+ 1
·

d∑
i=1

f(yi)

≤
exp

(
d(D−1)

2D ȳ
)

β exp (dȳ) + 1
· df(ȳ).

Let x satisfy that ȳ = ln(βx+1
x+γ ), i.e. x = 1−βγ

eȳ−β − γ.

It is then easy to verify that x ∈ (0, 1] since all xi ∈
(0, 1] and yi = ln(βxi+1

xi+γ ) is monotone with respect to

xi. Therefore, α(d;x1, . . . , xd) is maximized when all
xi = x ∈ (0, 1].

We then deal with the symmetric case. Let

α(d, x) = α(d;x, . . . , x︸ ︷︷ ︸
d

)

=
d(1− βγ)x

D+1
2D (βx+ 1)

d(D−1)
2D

(x+ γ)1+
d(D−1)

2D

(
β
(

βx+1
x+γ

)d
+ 1

) .

Let f(x) =
(

βx+1
x+γ

)d
be the symmetric version of the

recursion (2.1). Observe that α(d, x) = Φ(x)
Φ(f(x)) |f

′(x)|,
which is exactly the amortized decay ratio in the sym-
metric case.

Recall the formal definitions of D and X in Defini-
tion 4.4 in Section 4. Our main discovery is the follow-
ing lemma which states that at the uniqueness threshold
γ = Γ(β), the value of α(d, x) is maximized at d = D
and x = X with α(D,X) = 1. It is in debt to the magic
of the potential method to observe such a harmoniously
beautiful coincidence between amortized correlation de-
cay and phase transition of uniqueness.

Lemma 5.2. Let 0 ≤ β < 1 and γ = Γ(β). It holds that
sup d≥1

0<x≤1
α(d, x) = α(D,X) = 1.

Proof. It is not difficult to verify that α(D,X) = 1.
Note that (4.2) and (4.3) hold for γ = Γ, d = D and
x = X. Then

α(D,X) =
D(1− βΓ)

(
βX+1
X+Γ

)D
(βX + 1)(X + Γ)

·

 X(
βX+1
X+Γ

)D


D+1
2D

·

 βX + 1

β
(

βX+1
X+Γ

)D
+ 1


=

D(1− βΓ)X

(βX + 1)(X + Γ)

(
X

X

)D+1
2D
(
βX + 1

βX + 1

)
= 1.

We then show that sup d≥1
0<x≤1

α(d, x) = α(D,X).

For the rest of the proof, we assume that 0 ≤ β < 1,
d ≥ 1, and 0 < x ≤ 1. Due to lemma 4.1, 1 < Γ(β) < 1

β .

And we know that X = x(Γ, D) ∈ (0, 1).

Denote that z =
(

βx+1
x+Γ

)d
. Then α(d, x) can

be rewritten as α(d, x) = C1 · dz
D−1
2D

(βz+1) , where C1 =
1−βΓ
x+Γ x

D+1
2D > 0 is independent of d. Thus,

∂α(d, x)

∂d
=

C1z
D−1
2D

2D (βz + 1)
2 · g(z),

where the function g(z) is defined as

g(z) = 2D (βz + 1)− ((D + 1)(βz + 1)− 2D) ln z.

It is obvious that C1z
D−1
2D

2D(βz+1)2
> 0, thus the sign of ∂α(d,x)

∂d

is governed by g(z). Note that 0 < z =
(

βx+1
x+Γ

)d
< 1.
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Then

d g(z)

d z
=

1

z
((D − 1)(βz + 1)− (D + 1)βz ln z)

> (D − 1)(βz + 1) ≥ 0

Therefore, g(z) is strictly increasing with respect to

z. Due to Lemma 4.3, ln
(

βX+1
X+Γ

)
= 2(βX+1)

(D+1)(βX+1)−2D .

Thus,

g(X) = 2D (βX + 1)

−D ((D + 1)(βX + 1)− 2D) ln

(
βX + 1

X + Γ

)
= 0.

Therefore, ∂α(d,x)
∂d < 0 when z < X; ∂α(d,x)

∂d = 0 when

z = X; and ∂α(d,x)
∂d > 0 when z > X. Note that z =(

βx+1
x+Γ

)d
is monotonically decreasing with respect to d

since
(

βx+1
x+Γ

)
< 1

Γ < 1. Let ρ(x) = lnX
ln(βx+1)−ln(x+Γ) . It

is then easy to verify that

∂α(d, x)

∂d


< 0 if d > ρ(x),

= 0 if d = ρ(x),

> 0 if d < ρ(x).

Therefore, for any d and x, α(d, x) ≤ α(ρ(x), x).

Recall that α(d, x) = (1−βΓ)x
D+1
2D

x+Γ · dz
D−1
2D

(βz+1) , where

z =
(

βx+1
x+Γ

)d
. When d = ρ(x) = lnX

ln(βx+1)−ln(x+Γ) , it

holds that z =
(

βx+1
x+Γ

)d
= X. Therefore,

α(ρ(x), x) = C2 ·
x

D+1
2D

(x+ Γ)(ln(βx+ 1)− ln(x+ Γ))
,

where C2 = (1−βΓ)X
D−1
2D lnX

(βX+1) is independent of x, and

C2 < 0 since 0 < X < 1.

dα(ρ(x), x)

dx
=

C2x
−D+1

2D · h(x)

2D(x+ Γ)2(βx+ 1)
(
ln
(

βx+1
x+Γ

))2 ,
where

h(x) = 2D(1− βΓ)x

− (βx+ 1)(2Dx− (D + 1)(x+ Γ))

· ln
(
βx+ 1

x+ Γ

)
.

It is easy to see that C2x
−D+1

2D

2D(x+Γ)2(βx+1)(ln( βx+1
x+Γ ))

2 < 0 and

h(x) is monotonically increasing. Due to Lemma 4.3,

ln
(

βX+1
X+Γ

)
= 2D(1−βΓ)X

(βX+1)(2DX−(D+1)(X+Γ)) , thus h(X) = 0.

Therefore, dα(ρ(x),x)
d x is monotonically decreasing with

respect to x and dα(ρ(x),x)
d x

∣∣∣
x=X

= 0, which implies that

for any x, α(ρ(x), x) ≤ α(ρ(X), X).

Due to (4.2), it holds that X =
(

βX+1
X+Γ

)D
, thus

ρ(X) = lnX

ln( βX+1
X+Γ )

= D, hence α(ρ(X), X) = α(D,X).

In conclusion, assuming 0 ≤ β < 1 and γ = Γ(β),
for any d ≥ 1 and 0 < x ≤ 1, it holds that

α(d, x) ≤ α(ρ(x), x) ≤ α(ρ(X), X) = α(D,X) = 1.

As a consequence of the above lemma, a strict upper
bound is obtained as follows.

Lemma 5.3. For 0 ≤ β < 1 and Γ(β) < γ < 1
β , there

exists a constant α < 1 such that for any d ≥ 1 and
0 < x ≤ 1, it holds that α(d, x) ≤ α.

Proof. Let αβ,γ = sup d≥1
0<x≤1

α(d, x). Note that αβ,γ is a

constant independent of d and x. And αβ,Γ = 1 due to
Lemma 5.2.

We then show that αβ,γ < αβ,Γ for Γ < γ < 1
β .

In particular, we first show that for any d ≥ 1 and
0 < x ≤ 1, α(d, x) is strictly decreasing with respect to
γ over γ ∈ (Γ, 1

β ).

α(d, x) = C3 ·
(
1− βγ

x+ γ

)
· (x+ γ)

d(D+1)
2D

(β(βx+ 1)d + (x+ γ)d)
,

where C3 = dx
d(D+1)

2D (βx+ 1)
d(D−1)

2D > 0 is independent

of γ. Let h(γ) = (x+γ)
d(D+1)

2D

(β(βx+1)d+(x+γ)d)
.

dh(γ)

d γ
=

d(D + 1)(x+ γ)
d(3D+1)

2D −1

2D (β(βx+ 1)d + (x+ γ)d)
2

·
(
β

(
βx+ 1

x+ γ

)
− D − 1

D + 1

)
<

d(D + 1)(x+ γ)
d(3D+1)

2D −1

2D (β(βx+ 1)d + (x+ γ)d)
2

(
β

Γ
− D − 1

D + 1

)
< 0,

where the second to the last inequality holds because
x > 0 and γ > Γ, and the last inequality is due to

Lemma 4.3. The fact that dh(γ)
d γ < 0 implies that h(γ)

is strictly decreasing. Thus, α(d, x) = C3 ·
(

1−βγ
x+γ

)
·h(γ)

is strictly decreasing with respect to γ over γ ∈ (Γ, 1
β ).

Let αγ(d, x) denote the α(d, x) with parameter γ.
We can assume that there exist finite d∗ ≥ 1 and
constant 0 < x∗ ≤ 1 achieving that αγ(d

∗, x∗) =
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sup d≥1
0<x≤1

αγ(d, x), since if otherwise it would hold that

sup d≥1
0<x≤1

αγ(d, x) is achieved by either d→∞ or x→ 0,

but in either case it is easy to verify that αγ(d, x)→ 0,
thus αβ,γ = sup d≥1

0<x≤1
αγ(d, x) = 0 and we are done.

Since α(d, x) is strict decreasing with respect to γ, it
holds that αγ(d

∗, x∗) < αΓ(d
∗, x∗) for any γ ∈ (Γ, 1

β )
Therefore,

αβ,γ = sup
d≥1

0<x≤1

αγ(d, x)

= αγ(d
∗, x∗)

< αΓ(d
∗, x∗)

≤ sup
d≥1

0<x≤1

αΓ(d, x)

= αβ,Γ

= 1.

Combining Lemma 5.1 and Lemma 5.3, we have
the following lemma which bounds the amortized corre-
lation decay when the uniqueness is satisfied.

Lemma 5.4. Let α(d;x1, . . . , xd) be defined by (5.13).
For 0 ≤ β < 1 and Γ(β) < γ < 1

β , there exists a
constant α < 1 which depends only on β and γ, such
that for any d ≥ 1 and xi ∈ (0, 1], i = 1, 2, . . . , d, it
holds that α(d;x1, . . . , xd) ≤ α

Proof. By Jensen’s inequality, α(d;x1, . . . , xd) is upper
bounded by its symmetric form, when all xi = x. De-
note this symmetric form as α(d, x) = α(d;x, . . . , x),
and the symmetric version of the recursion (2.1) as

f(x) =
(

βx+1
x+γ

)d
. Observe that α(d, x) = Φ(x)

Φ(f(x)) |f
′(x)|,

which is exactly the amortized decay ratio in the sym-
metric case. Denote by X the fixed point X = f(X) at
d = D and γ = Γ(β). Our main discovery is that at the
uniqueness threshold γ = Γ(β), α(d, x) is maximized at
d = D and x = X with α(D,X) = 1. It is in debt to
the magic of the potential method to discover such a
harmoniously beautiful coincidence between amortized
correlation decay and phase transition of uniqueness.
The lemma follows by observing that α(d, x) is strictly
decreasing with respect to γ.

The formal proof can be found in the full version of
the paper.

The following lemma bounds the amortized correla-
tion decay with respect to the refined metric ofM -based
depth.

Lemma 5.5. Let 0 ≤ β < 1 and Γ(β) < γ < 1
β . There

exist constants α < 1 and M > 1 which depend only
on β and γ, such that for every vertex v ∈ BM (L),

assuming that v has d0 children fixed to be blue, d1
children fixed to be green, and d free children v1, . . . , vd,

ϵv ≤Mα⌈logM (d0+d1+d+1)⌉−1;(5.14)

ϵv ≤ α⌈logM (d0+d1+d+1)⌉ · max
1≤i≤d

{ϵvi} .(5.15)

Proof. We choose α to be the one in Lemma 5.4, and
M > 1 to satisfy

d

γkD−1
2D

≤ α⌈logM k⌉ for k ≥M.(5.16)

Due to (5.9),

ϵv ≤
d

γ(d0+d1+d)D−1
2D

≤Mα⌈logM (d0+d1+d+1)⌉−1,

where the last inequality follows from (5.16) if d0+d1+
d ≥ M and the case d0 + d1 + d < M is trivial since

d

γ(d0+d1+d)D−1
2D

< d ≤M . Thus (5.14) is proved.

Due to (5.12), ϵv ≤ α(d; R̃1, . . . , R̃d)·max1≤i≤d{ϵvi}
where Rvi ≤ R̃i ≤ Rvi + δvi . Since v ∈ BM (L), its
children vi ∈ B∗

M (L). As we discussed in the beginning

of this section, 0 < Rvi
≤ Rvi+δvi ≤ 1, thus R̃i ∈ (0, 1].

Then due to Lemma 5.4, there is a constant α < 1,

ϵv ≤ α(d; R̃1, . . . , R̃d) · max
1≤i≤d

{ϵvi}(5.17)

≤ α · max
1≤i≤d

{ϵvi}.

Thus, (5.15) holds trivially when d0 + d1 + d < M . As
for d0 + d1 + d ≥M , due to (5.11),

ϵv ≤
d

γ(d0+d1+d)D−1
2D

·max
i
{ϵvi}

≤ α⌈logM (d0+d1+d+1)⌉ · max
1≤i≤d

{ϵvi} .

Therefore, (5.15) is proved.

Proof of Theorem 2.1. We prove by structural
induction in BM (L). The hypothesis is

∀v ∈ BM (L), ϵv ≤MαL−LM (v)−1.

For the basis, we consider those vertices v ∈ BM (L)
whose children are in B∗

M (L) \ BM (L). The fact
that the children of v are not in BM (L) implies that
LM (v)+ ⌈logM (d0+d1+d+1)⌉ > L, where d0+d1+d
is the number of children of v. Then due to (5.14) of
Lemma 5.5,

ϵv ≤Mα⌈logM (d0+d1+d+1)⌉−1

≤MαL−LM (v)−1.
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The induction step is straightforward. For every child
vi of v, LM (vi) = LM (v) + ⌈logM (d0 + d1 + d + 1)⌉.
Suppose that the induction hypothesis is true for all vi.
Due to (5.15) of Lemma 5.5,

ϵv ≤ α⌈logM (d0+d1+d+1)⌉ · max
1≤i≤d

{ϵvi}

≤ α⌈logM (d0+d1+d+1)⌉+L−LM (vi)−1

= αL−LM (v)−1.

The hypothesis is proved.
Finally, for the root r of the tree, LM (r) = 0, thus

due to (5.8), there exists an R̃ ∈ [Rr, Rr + δr] ⊆ (0, 1]
such that

δr = Φ(R̃) · ϵr
≤ R̃

D+1
2D (βR̃+ 1) ·MαL−LM (r)−1

≤ 2MαL−1.

As we discussed in the beginning of this section, this
implies Theorem 2.1.

6 A tight analysis for β = 0

In this section, we give a slightly improved and tight
analysis (since we also have a hardness result) of the
algorithm when β = 0. In the definition of Γ(β),
we take the maximum over all the possible real d ≥
1. As degrees of graphs, only those integer values
have physical meanings and we also believe that the
maximum value over all the integer d gives the right
boundary between tractable and hard. In the following,
we show how to extend our result to integral d for the
special case of β = 0.

Recall that 0 ≤ β < 1, x̂ satisfies x̂ =
(

βx̂+1
x̂+γ

)d
.

The integer version of Γ(β) can be formally defined as

Γ∗(β) = inf

{
γ ≥ 1

∣∣∣∣∣ ∀d ∈ {1, 2, 3, . . .},d(1−βγ)(βx̂+1)d−1

(x̂+γ)d+1 ≤ 1

}
.

For β = 0, we can solve it and have that Γ∗(0) =

maxd∈{1,2,3,...}(d − 1)d−
d

d+1 . It is easy to verify that

(d − 1)d−
d

d+1 is monotonously increasing when d ≤ 11,
decreasing when d ≥ 12 and reaching the maximum
when d = 11. Therefore Γ∗(0) = 10 · 11− 11

12 .

We notice that Γ∗(0) = 10 · 11− 11
12 ≈ 1.1101714

and the continuous version Γ(0) ≈ 1.1101715. The
integrality gap is almost negligible, especially when
compared to the previous best boundary for γ when
β = 0 provided by the heat-bath random walk algorithm
in [41], which is approximately 1.32.

Theorem 6.1. Let A =

[
0 1
1 γ

]
, where γ > Γ∗(0) =

10 · 11− 11
12 . There is an FPTAS for ZA(G).

Proof. The algorithm is exactly the same as the algo-
rithm in Section 3. What we need is to establish a
correlation decay. For this, we use a special potential
function by substituting β = 0 and D with D∗ = 11.
Therefore the potential function is

Φ(R) = R
D∗+1
2D∗ = R

6
11 .

The analysis remain the same as before, except Lemma
5.2, which is the only place assuming continuous d in
the old analysis. We need to reprove Lemma 5.2 for
integral d. The symmetric amortized decay α(d, x) is
now written as

α∗(d, x) =
dx

6
11

(x+ γ)1+
5d
11

.

We are about to show that if γ > Γ∗(0), there is a
constant α < 1 such that α∗(d, x) ≤ α < 1 for all
0 ≤ x < 1. Also by the strict monotonicity, we only
need to prove (by substituting γ with Γ∗(0))

α∗(d, x) =
dx

6
11

(x+ Γ∗(0))1+
5d
11

≤ 1.

Take the partial derivative of α∗ over x, we have

∂α∗

∂x
= − d

11x
5
11 (x+ Γ∗(0))2+

5d
11

((5 + 5d)x− 6Γ∗(0)).

For a fixed d, when x < 6Γ∗(0)
5+5d , α∗(d, x) is monotonous

increasing with x and when x > 6Γ∗(0)
5+5d , α∗(d, x) is

monotonous decreasing with x. So α∗(d, x) reach its

maximum when x = 6Γ∗(0)
5+5d . Substituting this into

α∗(d, x), we have

α∗(d, x) ≤ α̂(d)

=
2

1
11 3

6
11 11

5(1+d)
12 d(1 + d)

5
11

(11 + 5d)(10 + 12
1+d )

5d
11

.

We can verify that α̂(d) is monotonously increasing
when d ≤ 11 and decreasing when d ≥ 12 and it reach
its maximum when d = 11. The maximum is α̂(11) = 1.
This completes the proof.

For β = 0, it is very related to the hardcore model.
We can make use of the hardness result in [58] and [31]
to get a tight hardness result as follows.
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Theorem 6.2. Let A =

[
0 1
1 γ

]
, where γ < Γ∗(0) =

10 · 11− 11
12 . There is no FPRAS for ZA(G) unless

NP = RP .

Proof. The starting point is the hardness result for
hardcore model in [58]. For hardcore model, the
partition function is

Zλ(G) =
∑

S∈I(G)

λ|S|,

where the summation goes over all the independent set
of G. For β = 0, nonzero terms in the summation

ZA(G) =
∑
σ∈2V

∏
(i,j)∈E

Aσ(i),σ(j)

have a one-to-one corresponding with all the indepen-
dent sets of G. The term indexed by σ is nonzero iff
σ−1(0) is an independent set of G. So ZA(G) can be
rewritten as

ZA(G) = γ|E|
∑

S∈I(G)

∏
v∈S

γ−d(v),

where d(v) is the degree of vertex v. If G is a d-regular
graph, this summation can be further rewritten as

ZA(G) = γ|E|
∑

S∈I(G)

(γ−d)|S|.

Since γ|E| is a global factor which can be easily com-
puted, the computation for ZA(G) of d-regular graph
G is equivalent to the partition function of the hard-
core model on G with fugacity parameter γ−d. In
[58] and [31], it is proved that there is no FPRAS for
the partition function for hardcore model on graphs
with maximum degree d when the fugacity parame-

ter λ > (d−1)d−1

(d−2)d
unless NP=RP, when d ≥ 6. If we

can strength the hardness result to d-regular graph, we
can use the equivalence relation to get a hardness re-
sult for the the two-spin system model when β = 0

and γ−d > (d−1)d−1

(d−2)d
. Let d = 12, the inequality gives

γ < 10 · 11− 11
12 , as what we claimed. In the following,

we show that their hardness proof for hardcore model
indeed already works for d-regular graph.

To prove the hardness of the hardcore model. A
reduction from the max-cut problem to the hardcore
partition function is built in [58]. The hard instance
of the hardcore problem in their reduction is almost d-
regular except some vertices with degree d − 1. It can
be easily verified in their gadget that if we are starting
from a max-cut instant in a regular graph, we can choose

the suitable parameter and build the reduction to a d-
regular instance in the hardcore model. So it remains
to show that max-cut on a regular graph is already NP-
hard.

This can be done by a simple reduction from max-
cut on arbitrary graph to a max-cut instance of a regular
graph. Let G = (V,E) be a given max-cut instance. Let
∆ be the maximum degree of G. Then the new instance
is of 2∆-regular. The new graph G′ = (V ′, E′) is defined
as follows:

• For every vertex v ∈ V , we construct 1+2(∆−d(v))
vertices in V ′, we name them as v and v+i , v

−
i for

i = 1, 2, . . . ,∆− d(v). These are all the vertices in
the new graph G′.

• For every v ∈ V and i ∈ {1, 2, . . . ,∆ − d(v)}, we
connect 2∆ − 1 edges in G′ between v+i and v−i ,
one edge between v and v+i , and one edge between
v and v−i .

• For every (u, v) ∈ E be an edge of E, we connect
two edges between u and v in G′.

It is easy to see that all the vertices in graph G′ have
degree 2∆. For a max-cut for G′, we will always put
v+i and v−i into different sides for every v ∈ V and
i ∈ {1, 2, . . . ,∆− d(v). If not, one can improve the cut
by moving one of them to the other side. Given that v+i
and v−i are always in different sides, the contribution
in the cut for the edges between v+i and v−i , v and v+i ,
v and v−i are all fixed. The remaining part is identical
to the original graph except that we double every edge.
This finishes the reduction and completes the proof.

7 Open Problems

Our analysis of correlation decay assumes a continuous
degree d because of the the using of differentiation.
This continuous relaxation of discrete ds creates a gap
between the actual threshold achieved in the paper and
the uniqueness threshold. An open problem is to close
this gap by improving the analysis to integral ds and the
uniqueness threshold realized by infinite (d+1)-regular

trees T̂d. It will be very interesting to prove a hardness
result beyond the uniqueness threshold and observe the
similar transition of computational complexity in spin
systems as in the hardcore model [58].

In this paper, we consider the two-state spin sys-
tems without external fields. An open problem is to ex-
tend our result to cases where there is an external field
as in [41]. Since the hardcore model can be expressed
as a two-state spin system with an external field. This
will give a unified theory covering the previous results
for the hardcore model.
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