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We present fully polynomial-time (deterministic or randomised) approximation schemes for Holant problems,
defined by a non-negative constraint function satisfying a generalised second-order recurrence modulo in
a couple of exceptional cases. As a consequence, any non-negative Holant problem on cubic graphs has
an efficient approximation algorithm unless the problem is equivalent to approximately counting perfect
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1 INTRODUCTION

Great progress has been made recently in the classification of counting problems. One major
achievement is the full dichotomy for counting constraint satisfaction problems (CSPs) [5, 15],
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even with complex weights [7]. However, such a classification is for exact counting, and for ap-
proximation, even to move beyond some rather modest model seems quite difficult.

Holant problems [9] are a framework of expressing counting problems motivated by Valiant’s
holographic algorithms [42]. The “Holant” is a partition function on graphs where edges are vari-
ables and vertices are constraint functions. The benefit of this choice is the ability to express prob-
lems like perfect matchings, which are provably not expressible in certain CSP-like vertex models
[12, 16, 37]. We parameterise Holant problems by the set of constraint functions that can be put
on vertices. Similar to the success of classifying counting CSPs, exact classifications have been ob-
tained for Holant problems defined by any set of complex-weighted symmetric Boolean functions
[8] and progresses have been made towards classifying more general Holant problems [2, 10, 27].

In this article, we make progress towards understanding the complexity of approximating sym-
metric Boolean Holant problems with non-negative weights. LetG = (V ,E) be a graph, π : V → F
be an assignment from the set of verticesV to a set of functions F , and fv = π (v ) is the constraint
function {0, 1}deg(v ) → C associated with the vertex v . The “Holant” is defined as follows:

Z (G;π ) :=
∑

σ ∈{0,1}E

∏
v ∈V

fv (σ |E (v ) ), (1)

where E (v ) is the set of adjacent edges of v , and σ |E (v ) is the restriction of σ on E (v ). We use the
shorthand Z (G ) or Z when G and π are clear from the context.

We call a Boolean constraint function f symmetric, if f (x) depends only on the hamming weight
|x| and is invariant under permutations of the indices. For a symmetric f of arity d , we associate
it with a signature [f0, f1, . . . , fd ], where fi = f (x) if |x| = i . We may use the term “constraint
function” and “signature” interchangeably. For example, if f is the “exact-one” function, namely,
f = [0, 1, 0, . . . , 0], then Z (G ) counts the number of perfect matchings inG; and if f is the Boolean
OR function, namely, f = [0, 1, 1, . . . , 1], then Z (G ) counts the number of edge covers in G. The
“reversal” of a symmetric f is the function f = [fd , fd−1, . . . , f0].

We focus on a fairly expressive family of symmetric functions satisfying generalised second-
order recurrences. More precisely, we say f = [f0, f1, . . . , fd ] satisfies a generalised second-order
recurrence, if there exist real constants (a,b, c ) � (0, 0, 0) such that afk + b fk+1 + c fk+2 = 0 for all
0 ≤ k ≤ d − 2. Denote by Holant( f ) the computational problem of evaluating Z (G ) where every
vertex is associated with the signature f . In particular, the input to Holant( f ) must be a d-regular
graph, where d is the arity of f . Our main theorem is the following.

Theorem 1. Let f = [f0, f1, . . . , fd ] be a symmetric constraint function of arity d ≥ 3 satisfying

generalised second-order recurrences, and fi ≥ 0 for all 0 ≤ i ≤ d . There is a fully polynomial-time

(deterministic or randomised) approximation algorithm for Holant( f ), unless, up to a non-zero factor,

f or its reversal is in one of the following form:

(1) [0, λ sin π
d
, λ2 sin 2π

d
, . . . , λi sin iπ

d
, . . . , 0] for some λ > 0;

(2) [0, 1, 0, λ, 0, . . . , 0, λ
d−2

2 , 0] if d is even, or [0, 1, 0, λ, 0, . . . , 0, λ
d−1

2 ] if d is odd, for some 0 ≤
λ < 1.

Moreover, in case (2), approximating Holant( f ) is equivalent to approximately counting perfect

matchings in general graphs.

We remark that the approximation complexity of case (1) remains open in general.
Understanding the complexity of signatures with second-order recurrences is the cornerstone in

the exact counting classifications. Since satisfying first-order recurrences implies that the function
is degenerate, these constraint functions are the first class satisfying a recurrence relation with
non-trivial complexity. More concretely, this family includes many interesting special cases:
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• Matchings and perfect matchings, whose constraint functions are [1, 1, 0, 0, . . . , 0] and
[0, 1, 0, 0, . . . , 0], respectively, with (a,b, c ) = (0, 0, 1).

• Even subgraphs, whose constraint functions are [1, 0, 1, 0, . . . ] with (a,b, c ) = (1, 0,−1).
More generally, we may put weights on even and odd degree vertices, and the constraint
functions become [x ,y,x ,y, . . . ] for some x ,y ≥ 0.

• Edge covers, whose constraint functions are [0, 1, 1, . . . , 1] with (a,b, c ) = (0, 1,−1).
• Fibonacci gates, namely, f of arity d such that fi+2 = b fi+1 + fi for all 0 ≤ i ≤ d − 2.
• All ternary symmetric functions.

For approximate counting, polynomial-time approximation algorithms are known only for a few
special cases, such as counting matchings [21], weighted even subgraphs [22], counting edge cov-
ers [26], and a weighted version of Fibonacci gates [29]. However, neither the Markov chain Monte
Carlo approach [21, 22] (including its “winding” extension [20, 30]), nor the correlation decay ap-
proach [26, 29], appears to be powerful enough to handle all functions in this family. However,
Theorem 1 covers almost all problems in this family, and some of the exceptional cases are shown
to be equivalent to counting perfect matchings, a central open problem in approximate count-
ing (see, for example, [14, 40] on partial progresses and barriers). Efficient approximate counting
algorithm for perfect matchings is only known in the bipartite case [23].

As a consequence, we have an algorithm for all non-negative Boolean Holants on cubic graphs,
unless the problem is equivalent to counting perfect matchings.

Theorem 2. Let f = [f0, f1, f2, f3] be a symmetric constraint function of arity 3 where fi ≥ 0 for

all 0 ≤ i ≤ 3. Holant( f ) has a fully polynomial-time (deterministic or randomised) approximation

algorithm, unless f or its reversal, up to a non-zero factor, is [0, 1, 0, λ] for some 0 ≤ λ < 1. In the

exceptional case, approximating Holant( f ) is equivalent to approximately counting perfect matchings

in general graphs.

We remark that Theorem 2 is in sharp contrast to the computational phase transition phenom-
enon, as demonstrated by two-state spin systems on cubic graphs [17, 18, 25, 38, 39], even without
external fields. For spin systems, a clear and sharp threshold between approximable and hard to
approximate is established for the parameters of the system, whereas for Holant problems on cubic
graphs, there seems to be no such transition irrespective of the value of the parameters (modulo
the open case of approximately counting perfect matchings).

1.1 Our Techniques

Our algorithm combines a number of ingredients:

• Barvinok’s approach to approximate partition functions via Taylor expansions [3]. This
approach was sharpened by Patel and Regts [31] to run within polynomial-time.

• To apply Barvinok’s approach, one has to have some rather precise knowledge of the zeros
of the corresponding graph polynomials. For Holant problems, Ruelle [34–36] has devel-
oped a systematic approach of bounding the zeros of the partition function via analysing
polynomials associated locally with vertices, under the disguise of “graph-counting
polynomials.”

• On top of combining Ruelle’s and Barvinok’s approaches, we also employ holographic trans-
formations a la Valiant [42], which is necessary to cover all cases in Theorem 1.

Although none of these ingredients is new, the main contribution of our work is to combine them
together (with reworks if necessary), and thoroughly analyses the zeros of functions with gener-
alised second-order recurrences. To be more specific, for a symmetric signature f = [f0, . . . , fd ]
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of arity d , define the “local” polynomial of f as

Pf (z) :=
d∑

i=0

(
d

i

)
fi · zi . (2)

We may also view Pf (z) as the polynomial for a single vertex with d dangling edges. For some
ε > 0, we call a polynomial P (z) Hε -stable, if P (z) � 0 as long as�z > −ε . Then one of our main
technical tool (see Theorem 15) says that if Pf (z) is Hε -stable for some ε > 0, then a polynomial-
time approximation algorithm exists for Holant( f ).

In general, to apply Barvinok’s method to approximate counting, one needs to deal with the
zeros of the whole partition function, which is usually not an easy task. Previous applications
appeal to some powerful tools such as the Lee-Yang theorem from statistical physics [28], or the
resolution of a long-standing conjecture [32]. In contrast, our approach requires only analysing
some low degree polynomials and is much easier to apply.

To go from Theorem 1 to Theorem 2, we also need to deal with cases not covered by Theorem 1,
which cannot be solved using zeros of Holant problems. These exceptional cases are handled by
the “winding” technique [20, 30] with Markov chains.

2 RUELLE’S METHOD ON ZEROS OF HOLANT PROBLEMS

Ruelle [34–36] (building upon the “Asano contraction” [1]) has developed a systematic approach to
bound zeros of the so-called “graph-counting polynomials.” As we will see later, these polynomials
coincide with unweighted Holant problems.

With a little abuse of notation, let Z (G; f ) be the partition function defined by (1) where fv = f
for all v ∈ V , and stratify Z (G; f ) by the number of edges chosen as follows:

Zk (G; f ) :=
∑

σ ∈{0,1}E and |σ |=k

∏
v ∈V

f (σ |E (v ) ). (3)

DefineZk (G;π ) similarly, and again,G and f may be omitted when they are clear from the context.
Let |E | =m. Then Z = Z (G; f ) can be rewritten as the evaluation of the polynomial

PG (z) :=
m∑

i=0

Zi · zi (4)

at z = 1. Namely, Z = PG (1). When f is a symmetric 0/1 function, then Equation (4) is the same
as the “graph-counting” polynomial defined by Ruelle [36].

Ruelle’s method has two main ingredients. First, we want to relate zeros of a univariate polyno-
mial with those of its polar form. For a polynomial P (z) =

∑d ′
i=0 aiz

i of degree d ′ ≤ d , its dth polar
form with variables z = (z1, . . . , zd ) is

P̂ (z) :=
∑

I ⊆[d]

a |I |(
d
|I |

) zI ,

where ai = 0 if i > d ′, [d] denotes {1, 2, . . . ,d }, and for an index set I , zI =
∏

i ∈I zi . For example,
the polar form of Pf (z) (recall Equation (2)) is

P̂f (z) :=
∑

I ⊆[d]

f |I |zI .

The polar form P̂ (z) is the unique multi-linear symmetric polynomial of degree at most d ′ such
that P̂ (z, z, . . . , z) = P (z). When d ′ < d , we view P (z) as a degenerate case, and it has zeros at ∞
with multiplicity d − d ′.
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Let H be a set in C and we use H = {z ∈ C | z � H } to denote its complement. We say a polyno-
mial P (z) ind ≥ 1 variables isH -stable if P (z) � 0 whenever z1, . . . , zd ∈ H . We will be particularly
interested in Hε -stableness where Hε is the half-plane:

Hε = {z ∈ C | �z > −ε },
and ε > 0. The Grace-Szegő-Walsh coincidence theorem [19, 41, 43] has the following immediate
consequence. See Reference [11] for the form we use here.

Proposition 3. A univariate polynomial P (z) is Hε -stable if and only if its polar form P̂ (z) is

Hε -stable.

Proposition 3 actually applies to an arbitrary circular domain in C, but we will only need it
for Hε .

The next ingredient is the Asano contraction [1], as extended by Ruelle [34].

Proposition 4. Let K1 and K2 be closed subsets of the complex plane C, which do not contain 0.

If the complex polynomial

α + βz1 + γz2 + δz1z2

can vanish only when z1 ∈ K1 or z2 ∈ K2, then

α + δz

can vanish only when z ∈ −K1 · K2 (:= {−a · b | a ∈ K1,b ∈ K2}).

We refer interested readers to Reference [34] for a very elegant proof of Proposition 4.
Let the δ -strip of [0, 1] be

{z ∈ C | ��
z�� ≤ δ and − δ ≤ �z ≤ 1 + δ }.

Lemma 5. For any ε > 0, the complement of −Hε · Hε contains a δ -strip of [0, 1] for some δ > 0
depending only on ε .

Proof. An equivalent way to write Hε is

Hε =

{
ρeiθ | ρ ≥ − ε

cosθ
for θ ∈

(π
2
,

3π

2

)}
.

Thus,

−Hε · Hε =

{
ρ1ρ2e

i (θ1+θ2+π ) | ρi ≥ −
ε

cosθi
for θi ∈

(π
2
,

3π

2

)
and i ∈ {1, 2}

}

=

{
ρei (θ1+θ2+π ) | ρ ≥ ε2

cosθ1 cosθ2
for θ1,θ2 ∈

(π
2
,

3π

2

)}

=

⎧⎪⎪⎨⎪⎪⎩ρeiθ | ρ ≥ ε2(
cos θ−π

2

)2
for θ ∈ (0, 2π )

⎫⎪⎪⎬⎪⎪⎭
=

{
ρeiθ | ρ ≥ 2ε2

1 − cosθ
for θ ∈ (0, 2π )

}
,

where the third line is because cosθ1 cosθ2 is maximised at θ1 = θ2 if their sum is fixed. Thus, the
complement of −Hε · Hε is

−Hε · Hε =

{
ρeiθ | ρ < 2ε2

1 − cosθ
for θ ∈ (0, 2π )

}
.
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Fig. 1. −Hε · Hε (in light gray) and the δ -strip of [0, 1] (in dark gray) for ε = 0.5.

It is easy to check that δ = ε2/2 suffices for the claim (See Figure 1 for an illustration of two
regions). �

Now, we are ready to state a very useful lemma.

Lemma 6. Let f be a symmetric signature of arity Δ and G be a Δ-regular graph. If the local

polynomial Pf (z) is Hε -stable for some ε > 0, then the global polynomial PG (z) has no zero in the

δ -strip of [0, 1], where δ is a constant depending only on ε .

Proof. We construct G = (V ,E) as follows. Start with a collection of vertices v ∈ V , each
with Δ dangling half-edges (ev

i )i ∈[Δ]. Call this graph G0, and connect dangling half-edges ev
i and

eu
j sequentially for each edge (u,v ) ∈ E. This gives a sequence of graphs G1, . . . ,G |E | = G. The

polynomial of G0 is PG0 (z) =
∏

v ∈V Pv (z), where Pv = Pf , and consider the multivariate version

P̂G0 (z) =
∏

v ∈V P̂v (zv ), where P̂v = P̂f and zv denotes the local variables corresponding tov . Since

Pf (z) is Hε -stable, by Proposition 3, P̂f (z) is as well, and so is P̂G0 (z). Suppose from Gi to Gi+1, ev
i

is connected with eu
j . Then the transformation from P̂Gi

to P̂Gi+1 is exactly the Asano contraction
as in Proposition 4 applied to zv

i and zu
j . At the end of this procedure, we obtainG and the polyno-

mial P̂G (z) does not vanish on the complement of −Hε · Hε . It implies that the same is true for the
univariate PG (z). By Lemma 5, the complement of −Hε · Hε contains a δ -strip of [0, 1], and this δ
depends only on ε . �

We note that it is necessary to have some slack ε in Lemma 6. One example is counting even
subgraphs, namely, the constraint f is [1, 0, 1, 0, . . . ]. Although all zeros of Pf lie on the imaginary
axis, the zeros of PG (z) can in fact be dense on the unit circle. To see this, letG be a cycle of length
n. Then PG (z) = 1 + zn as there are only two even subgraphs. The zeros thereof are dense on the
unit circle as n varies.

A related result obtained by Regts [33] asserts that if Pf (z) is sufficiently close to (x + 1)d , then
the global polynomial PG (z) has no zero in certain disks around the origin. We refer the readers
to Reference [33] for detailed statements. Such a zero-free region also implies the existence of
approximation algorithms, and cannot be directly compared with Lemma 6.

Lemma 6 can be generalised to a set of functions by following the proof of Lemma 6, if there
is an ε > 0 such that all of the local polynomials are Hε -stable. A univariate polynomial is called
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Hurwitz stable if all of its zeros are in the open left half-plane. For a fixed f , clearly if Pf (z) is
Hurwitz stable, then there is some ε > 0 such that Pf (z) is Hε -stable. However, Hurwitz stability
is not enough to derive the same conclusion of Lemma 6 for an infinite set of functions.

3 BARVINOK’S ALGORITHM

Our interest in Ruelle’s method is due to the algorithmic approach developed by Barvinok [3,
Section 2]. It roughly states that if a polynomial P (z) =

∑n
i=1 ciz

i of degree n is zero-free in a strip

containing [0, 1], then P (1) can be (1 ± ε )-approximated using c0, . . . , ck for some k = O
(
log n

ε

)
.

The basic idea is to truncate the Taylor expansion of log P (z) at z = 0. Let д(z) := log P (z) and
for k ≥ 0,

Tk (д) (z) :=
k∑

i=0

д(i ) (0)

i!
zi ,

where д(i ) is the ith derivative of д. In other words, Tk (д) (z) is the first k + 1 terms of the Taylor
expansion of д(z) at the origin. Then [3, Lemma 2.2.1] states the following.

Proposition 7. Let P (z) =
∑n

i=0 ciz
i be a polynomial such that for some β > 1, P (z) is zero-free

in the (closed) disk of radius β centered at the origin. Then there exists a constantCβ such that for any

0 < ε < 1, �����exp(Tk (д) (1))

P (1)
− 1

����� ≤ ε,

where k = Cβ log n
ε

.

This result states that we can approximately evaluate P (1) using the first O
(
log n

ε

)
terms of

the Taylor expansion of log P (x ) at the origin, when the polynomial is zero-free in the disk of
radius β > 1. If our polynomial PG (x ) is zero-free in the δ -strip of [0, 1], then we can apply a
transformation [3, Lemma 2.2.3], to transform it into a polynomial that is zero-free in the disk of
radius > 1.

The following lemma describes the construction.

Lemma 8. Let 0 < δ < 1 be a constant and β = 1 +
exp (− 1

δ
)

2−2 exp (− 1
δ

)
> 1. There exists a polynomialϕδ (z)

of degree exp (O ( 1
δ

)) such that

(1) ϕδ (0) = 0 and ϕδ (1) = 1;

(2) for every z ∈ C with |z | ≤ β , the value ϕδ (z) is within the 2δ -strip of [0, 1].

Proof. The idea to construct the polynomialϕδ is to start with the function log(z) (the principal
branch of the logarithm) by noting that the logarithm function maps a circle centered at zero to an
interval orthogonal to the real axis. We can then scale and shift the function to restrict the interval
to some desired region. Finally, we construct the polynomial ϕδ to approximate it.

To this end, we let h(z) := δ log 1
1−αz

where α is a parameter to be set. The condition h(0) = 0

is automatically satisfied. To satisfy h(1) = 1, we set α = 1 − exp (− 1
δ

). Then β = 1 +
exp (− 1

δ
)

2−2 exp (− 1
δ

)
=

1+α
2α

. Note that β < 1
α

, so h(z) is well-defined over the disk of radius β centered at the origin. It is
easy to verify that for every z ∈ C with |z | ≤ β , it holds that

−δ log 2 ≤ �h(z) ≤ 1 + δ log 2,

and ��
h(z)�� ≤ π

2
· δ .
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We use a polynomial, namely, the Taylor expansion of h(z) at the origin to approximate h(z). For
every k ≥ 0, the first k terms of the Taylor expansion of h at the origin is

Tk (h) (z) = δ
k∑

i=1

α i

i
· zi .

Then form = � log (10(1+α ))−log (1−α )
log 2−log (1+α ) � = exp

(
O

(
1
δ

))
, since |z | ≤ β , we have

|h(z) −Tk (z) | =
������δ

∞∑
i=m+1

α i

i
· zi

������ ≤ 2δ

(1 − α ) (m + 1)

( 1 + α

2

)m+1

≤ δ

10
.

In particular, we have

|Tm (h) (1) − 1| = |Tm (h) (1) − h(1) | ≤ δ

10
.

Finally, we define

ϕδ (z) =
Tm (h) (z)

Tm (h) (1)
to force ϕδ (1) = 1. This finishes the construction. �

Therefore, for a polynomial P (z) that is zero-free in the δ -strip of [0, 1], we can use Proposition 7
to approximately evaluate Pϕ (z) := P (ϕ δ

2
(z)), which is zero-free in the disk of radius β at the origin

for the value β defined in Lemma 8. Note that P (ϕ δ
2

(1)) = P (1).

Proposition 9. Let P (z) be a polynomial of degree n such that for some δ > 0, P (z) is zero-free in

the δ -strip of [0, 1]. Then there exists a constant Cδ such that for any 0 < ε < 1,�������
exp

(
Tk (log Pϕ ) (1)

)
P (1)

− 1

������� ≤ ε,

where k = Cδ log n
ε

.

At last, we show the Taylor expansionTk (log Pϕ ) (1) can be computed efficiently from the coef-
ficients of P .

Proposition 10. Let P (z) be a polynomial of degree n such that for some constant δ > 0, P (z) is

zero-free in the δ -strip of [0, 1]. For every 0 ≤ k ≤ n, assume that we have oracle access to the first k
coefficients of P (z), we can compute

Tk (log Pϕ ) (1)

in time O (k2).

Since the degree of ϕ δ
2

(z) is exp
(
O

(
1
δ

))
, we can write Pϕ (z) =

∑m
i=1 ciz

i where m = n +Cδ

for some constant Cδ depending only on δ . It is easy to compute the coefficients ck given the
coefficients of P (z) of degree at mostk inO (k ) time. Letдϕ := log Pϕ , we now show how to compute
Tk (дϕ ) using (ci )i≤k .

Let z1, . . . , zm be the zeros of a polynomial Pϕ (z) and for 0 ≤ k ≤ m, let pk :=
∑m

i=1 z
−k
i be the

kth inverse power sum of the zeros of Pϕ (z).
Newton’s identities state the relation between (pk )k and the coefficients (ci )i .

Proposition 11 (Newton’s Identity). For every 1 ≤ k ≤ m, it holds that

k · ck = −
k−1∑
i=0

ci · pk−i .
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Newton’s identities essentially provide a way to compute all pk consecutively using (ci )i , and
vice versa. To be specific,

p0 = m,

pk = −c−1
0 · ��

k−1∑
i=1

pi · ck−i + k · ck

� for 1 ≤ k ≤ m.

Therefore, it costs O (k2) time to compute pk using above recurrence.
However, we can write Pϕ (z) = cm

∏m
i=1 (z − zi ). Recall that дϕ (z) = log Pϕ (z) = log cm +∑m

i=1 log (z − zi ).
It is easy to calculate that for any i ≥ 1,

д(i )
ϕ

(0) = −(i − 1)!
m∑
j=1

z−i
j = −(i − 1)!pi .

Therefore,

Tk (дϕ ) (z) := log c0 −
k∑

i=1

pi

i
zi . (5)

This proves Proposition 10.

3.1 Computing the Inverse Power Sums

Given Proposition 7 and Equation (5), the main task then reduces to computing the first k inverse
power sums (pi )i≤k . We follow the method of Patel and Regts [31].

We need some notations first. Let G be a family of all graphs, and Gk be all graphs with at most k
vertices. We call a function д : G → C a graph invariant if д(G ) = д(H ) wheneverG 
 H . A graph
polynomial is a graph invariantQ : G → C[z], where C[z] is the polynomial ring over C. We call a
graph invariant д(·) additive if for any two graphsG and H , it holds that д(G � H ) = д(G ) + д(H ),
whereG � H is the graph consisting of disjoint copies ofG andH . Similarly, we call it multiplicative

if for every two graphsG and H , it holds that д(G � H ) = д(G ) · д(H ). For graphs H andG, we use
#Ind(H ,G ) to denote the number of induced subgraphs of G isomorphic to H . Then #Ind(H , ·) is
a graph invariant for a fixed graph H . By convention let #Ind(∅,G ) = 1 for any G.

Definition 12. LetQ (G ) (z) =
∑d (G )

i=1 ai (G )zi be a multiplicative graph polynomial of degree d (G )
such thatQ (G ) (0) = 1 for anyG. We callQ (·) a bounded induced graph counting polynomial (BIGCP)

if there are constants α , β ∈ N such that the following holds:

• for every graph G, there exist λH,i ∈ C such that

ai (G ) =
∑

H ∈Gα i

λH,i · #Ind(H ,G ); (6)

• for every H ∈ Gαi , λH,i can be computed in time exp (β · |V (H ) |), where V (H ) is the set of
vertices of H .

Patel and Regts [31, Theorem 3.2] have shown that the inverse power sums can be computed
for BIGCP in single exponential time.

Proposition 13. Let Δ ∈ N ,G be a graph with maximum degree Δ andQ (G ) (·) be a BIGCP. There

is a deterministic exp (Ck ln Δ)-time algorithm, which computes the inverse power sums (pi )i≤k of

Q (G ) (·), for some constant C > 0.

To our need, we just need to verify that PG (·) from (4) is a BIGCP, whenever f0 = 1.
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Lemma 14. Let G = (V ,E) be a Δ-regular graph and f = [f0, f1, . . . , fΔ] be a signature. If f0 = 1,

then the Holant polynomial PG (·) is a BIGCP with α = 2 and β = CΔ for some constant C > 0.

Proof. Clearly PG (0) = Z0 (G ) = f |V |0 = 1. We would like to define λH,i so that for every 1 ≤
i ≤ n,

Zi (G ) =
∑

H ∈G2i

λH,i · #Ind(H ,G ). (7)

For any σ ∈ {0, 1}E , let G[σ ] be the subgraph induced by the set of vertices with at least 1 ad-
jacent edges under σ . Let Si be the set of subgraphs induced by assignments of Hamming weight
i , namely, Si := {G[σ ] : σ ∈ {0, 1}E and |σ | = i}. The equivalence relation of graph isomorphisms
induces a partition of Si . We choose one graph from each equivalence class and denote this family
of graphs by Hi . Therefore, for every two distinct graphs H1,H2 ∈ Hi , they are not isomorphic.
Moreover, as G[σ ] has at most 2i vertices,Hi ⊆ G2i .

For every H ∈ Hi , consider an assignment π of signatures, where v ∈ V of degree d ≤ Δ is
assigned [f0, f1, . . . , fd ], a truncated f . Let

λH,i := Zi (H ;π ).

To verify Equation (7), we rewrite

Zi (G ) =
∑

σ ∈{0,1}E and |σ |=i

∏
v ∈V

f (σ |E (v ) )

=
∑

H ∈G2i

∑
σ ∈{0, 1}E

|σ |=i and G[σ ]
H

∏
v ∈V

f (σ |E (v ) )

=
∑

H ∈G2i

∑
G′ is an induced subgraph of G

G′
H

∑
σ ∈{0, 1}E

|σ |=i and G[σ ]=G′

∏
v ∈V

f (σ |E (v ) )

=
∑

H ∈G2i

∑
G′ is an induced subgraph of G

G′
H

Zi (G ′;π ) · f |V \V (H ) |
0

=
∑

H ∈G2i

Zi (H ;π ) · #Ind(H ,G ),

since Zi (G ′;π ) = Zi (H ;π ) whenever G ′ 
 H . Thus, Equation (7) holds.
Since Hi ⊆ G2i , we have that α = 2. Moreover, H contains at most Δ |V (H ) | edges. As a con-

sequence, Zi (H ;π ) can be computed in time 2O (Δ |H |) . Thus, we can take β = CΔ for some con-
stant C > 0. �

Gathering what we have seen so far, we have the following theorem.

Theorem 15. Let f be a symmetric signature of arity Δ. If the local polynomial Pf (x ) is Hε -stable

for some ε > 0, then there is an FPTAS for Holant( f ).

Proof. Since Pf (x ) is Hε -stable, f0 � 0. We may thus normalize f so that f0 = 1. By Lemma 6,
Pf (x ) being Hε -stable implies that for any Δ-regular G = (V ,E), PG (x ) is zero-free in a δ -strip
containing [0, 1]. Recall that Z (G; f ) = PG (1). By Proposition 9, we can (1 ± ε )-approximate PG (1)

using exp(Tk (log PG ) (x )) for some k = O
(
log m

ε

)
, where m = |E |. To compute Tk (log PG ) (x ), we

use Proposition 13 and Lemma 14 to compute the inverse power sums (pi ) of PG (x ), and then
apply Proposition 11 to get the first k coefficients of PG (x ). The theorem then follows from
Proposition 10. �
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Remark. Theorem 15 is a sufficient but not necessary condition for a Holant problem to be
approximable. To see this, once again, consider the problem of counting even subgraphs discussed
near the end of Section 2.

4 HOLOGRAPHIC TRANSFORMATIONS

Theorem 15 implies an FPTAS for Holant( f ) if f is Hε -stable. However, an FPTAS may still exist
even if f is notHε -stable. One way to extend the reach of this approach is via Valiant’s holographic
transformation [42], which changes f but preserves the partition function. We remark that even
with holographic transformations, this approach is not exhaustive. An example is the problem of
counting even subgraphs.

We use Holant ( f | д) to denote the Holant problem where the input is a bipartite graph H =
(U ,V ,E). Each vertex inU orV is assigned the signature f or д, respectively. Call this assignment
π , namely, π (u) = f for any u ∈ U and π (v ) = д for any v ∈ V . Recall Equation (1), and Z (H ;π )
is the output of the computational problem Holant ( f | д). The signature f is considered as a row
vector (or covariant tensor) of length 2arity(f ) (by listing its truth table), whereas the signature д is
considered as a column vector (or contravariant tensor) of length 2arity(д) .

Let T be an invertible 2-by-2 matrix. Let d1 = arity( f ) and d2 = arity(д). Define f ′ = f ·T ⊗d1

and д′ = (T −1)
⊗d2д. Let π ′ be the assignment such that π ′(u) = f ′ for any u ∈ U and π ′(v ) = д′

for any v ∈ V .

Proposition 16 (Valiant’s Holant Theorem [42]). If T ∈ C2×2 is an invertible matrix, then

for any bipartite graph H , Z (H ;π ) = Z (H ;π ′), where π ′ is defined above.

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. For a (non-bipartite) Holant problem, we can always view
the edge as a binary equality function =2. Thus, Holant( f ) is the same as Holant( f |=2). Let O2 (C)
be the set of 2-by-2 orthogonal matrices, namely, O2 (C) = {T ∈ C2×2 | TT T = I2}. As orthogonal
transformations preserve the binary equality, the following result will become handy in the stan-
dard setting.

Proposition 17 ([9]). If T ∈ O2 (C) is an orthogonal matrix, then for any d-regular graph G and

a signature f of arity d , Z (G; f ) = Z (G; f ·T ⊗d ).

As a particular consequence of Proposition 17, under the transformation [0 1
1 0], the complexity

of Holant( f ) is equivalent to Holant( f ) where f = [fd , fd−1, . . . , f0]. We will use this fact in the
following without explicitly mentioning it.

5 SECOND-ORDER RECURRENCES

The aim of this section is to study the locations of zeros of local polynomials of signatures satisfying
generalised second-order recurrences to apply Theorem 15. Specifically, we identify the family of
signatures whose local polynomials areHε -stable for some ε > 0, under some suitable holographic
transformations.

For a tuple of reals (a,b, c ) � (0, 0, 0), define

Fa,b,c := {[f0, f1, . . . , fd ] : afk + b fk+1 + c fk+2 = 0,∀0 ≤ k ≤ d − 2, and fk ≥ 0,∀0 ≤ k ≤ d }.
The family Fa,b,c consists of signatures with non-negative entries satisfying second-order linear
recurrence relation parameterized by (a,b, c ). Whenever Fa,b,c appears, we always assume that
(a,b, c ) � (0, 0, 0).

The following proposition states the general form of a function satisfying a generalised second-
order recurrence.
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Proposition 18. Let f = [f0, . . . , fd ] ∈ Fa,b,c be a signature and c � 0. There are two cases:

• if b2 � 4ac , then for every k ∈ {0, 1, . . . ,d },

fk = xϕk
1 + yϕ

k
2 ,

where ϕ1,ϕ2 are the two roots of the polynomial cz2 + bz + a = 0 and x ,y are two constants

independent of k and determined by f0 and f1;

• if b2 = 4ac , then for every k ∈ {0, 1, . . . ,d },

fk = xϕk + ykϕk−1,

where ϕ is the unique root of the polynomial cz2 + bz + a = 0 and x ,y are two constants in-

dependent of k and determined by f0 and f1. In case of ϕ = 0, we follow the convention that

0 · 0−1 = 0.

In this section, we assume that all signatures (or their reversals) in consideration have nonzero
leading term, i.e., f0 � 0. By considering the reversal if necessary, this assumption covers all cases
where f0 � 0 or fd � 0. We will discuss the case of f0 = fd = 0 in Section 6.

We will use F ∗
a,b,c

to denote the subset family of Fa,b,c with this additional property f0 > 0.
It turns out that the behaviour of signatures in F ∗

a,b,c
is closely related to the sign of the value

b2 − 4ac , namely, the discriminant of the characteristic polynomial cz2 + bz + a. Therefore, our
discussion is divided into three parts.

5.1 b2 − 4ac > 0

In this case, the characteristic polynomial of signatures in F ∗
a,b,c

has two distinct real roots. We
first single out a special case.

Lemma 19. Let f be a symmetric signature of arity d ≥ 3, where d is an odd integer, fi ≥ 0
for all i = 0, 1, . . . ,d , and f is not identically zero. If there exist p,q, s, t ∈ R such that p2 + q2 =

s2 + t2, ps + qt < 0, and f = (p,q)⊗d + (s, t )⊗d , then up to a non-zero (positive) scaler, f or f is

[1, 0, λ2, 0, . . . , λd−1, 0] for some λ > 1, where f := [fd , fd−1, . . . , f0].

Proof. Since f = (p,q)⊗d + (s, t )⊗d , we have fi = q
ipd−i + t isd−i . We consider cases depending

on the sign of qt .
First assume qt ≥ 0. The fact f1 ≥ 0 yields

qpd−1 + tsd−1 ≥ 0.

Since d is odd, then q and t must be both non-negative. Then t =
√
p2 + q2 − s2 ≥ 0. It follows from

ps + qt < 0 that ps < 0. We can assume without loss of generality that p > 0, s < 0 and ��p�� ≥ |s | (a
consequence of f0 ≥ 0). To ease the presentation, let s ′ = −s > 0. Then

ps + qt < 0 ⇐⇒ qt < ps ′ ⇐⇒ q2 (p2 + q2 − s ′2) < p2s ′2 ⇐⇒ ��q�� < ��s ′�� .
We then consider the requirement fd−1 ≥ 0. This is equivalent to

qd−1p + td−1s ≥ 0 ⇐⇒ qd−1p ≥ td−1s ′

⇐⇒ q2p
2

d−1 ≥ (p2 + q2 − s ′2)s ′
2

d−1

⇐⇒ q2 (p
2

d−1 − s ′
2

d−1 ) ≥ (p2 − s ′2)s ′
2

d−1 .
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We apply ��q�� < |s ′| and obtain

(p2 − s ′2)s ′
2

d−1 ≤ s ′2 (p
2

d−1 − s ′
2

d−1 ) ⇐⇒ p2

s ′2
− 1 ≤ p

2
d−1

s ′
2

d−1

− 1

⇐⇒ |s | ≥ |p |.

Therefore, it must hold that p = −s , q = t , and we have f = (p,q)⊗d + (−p,q)⊗d . Moreover, ps +
qt < 0 implies that p > q. If q = t = 0, then f is identically zero, a contradiction. Otherwise q > 0,
and we can choose λ = p

q
> 1 and f is [1, 0, λ2, 0, λ4, 0, . . . ] up to a non-zero scalar.

Now, we assume qt < 0, and without loss of generality further assume that q > 0 and t < 0.
Then t = −

√
p2 + q2 − s2. We distinguish between ps ≥ 0 and ps < 0.

(i) If ps ≥ 0, then the reasoning is the same as the case of qt ≥ 0 above, after exchanging p
and q, s and t , and reversing f .

(ii) Ifps < 0, then we first assume thatp < 0 and s > 0. In this case, we letp ′ = −p and t ′ = −t .
Then f0, f1, f2 ≥ 0 implies

sd ≥ p ′d ; t ′sd−1 ≤ qp ′d−1; t ′2sd−2 ≥ q2p ′d−2,

where p ′,q, t ′, s above are all positive. The first two imply that t ′p ′ ≤ qs , and the last two
imply that t ′p ′ ≥ qs . Thus, t ′p ′ = qs . This is further equivalent to s2q2 = p2 (p2 + q2 − s2),
or (p2 + q2) (p2 − s2) = 0. It implies that either p = q = 0 or p = −s . In both cases, f is
identically zero, a contradiction.

Finally, consider the case when p > 0 and s < 0. Then f0 = p
d + sd ≥ 0 implies ��p�� ≥ |s |.

However, fd = qd + td ≥ 0 is equivalent to ��q�� ≥ |t |. However p2 + q2 = s2 + t2. Thus, we
have p = −s and q = −t . This means that f is identically zero, also a contradiction. �

Let =d be the equality function of arity d , namely, the function [1, 0, . . . , 0, 1]. If β > 1, then the
problem Holant (=d | [β, 1, β]) is to compute the partition function of ferromagnetic Ising model

without external fields. An FPRAS for this problem has been given by Jerrum and Sinclair [22].
Then we have the following lemma.

Lemma 20. Let f = [f0, f1, . . . , fd ] ∈ F ∗
a,b,c

with b2 − 4ac > 0. Then one of the following holds:

• Holant ( f ) can be solved exactly in polynomial-time; or

• there is an invertible matrix M ∈ C2×2 such that Holant( f ·M ⊗d | (M−1)
⊗2 · (=2)) is a ferro-

magnetic Ising model without external fields; or

• there is an orthogonal matrix M ∈ O2 (C) such that either Pf ·M⊗d (z) or P
f ·M⊗d (z) is Hε -stable

for some ε > 0, where f := [fd , fd−1, . . . , f0]; or

• f or f is [1, 0, λ2, 0, λ4, 0, . . . , λd−1, 0] for some λ > 1 and has an odd arity d .

Proof. If c = 0, then b � 0 and afk + b fk+1 = 0 for all k ≤ d − 2. Thus, f0, . . . , fd−1 form a geo-
metric sequence with ratio ϕ = −a

b
∈ R, and f can be written as f = x (1,ϕ)⊗d + y (0, 1)⊗d , where

x ,y,ϕ ∈ R. Pulling x and y into the tensor power, there exist p,q, s, t ∈ R and r = 1 or −1 such
that f is a non-zero multiple of (p,q)⊗d + r (s, t )⊗d .

Otherwise, c � 0. It follows from Proposition 18 that we can rewrite f = x (1,ϕ1)⊗d + y (1,ϕ2)⊗d ,
where ϕ1,ϕ2 ∈ R and ϕ1 � ϕ2. Since f has non-negative weights, it implies that x ,y ∈ R as well.
Thus, similar to the case above, there exist p,q, s, t ∈ R and r = 1 or −1 such that f is a non-zero
multiple of (p,q)⊗d + r (s, t )⊗d .

The four possibilities of the lemma come from the values p,q, s, t might take. If pt = qs , then f
is degenerate and the partition function can be computed in polynomial time. This is because the
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constraint factors into unary ones (see, e.g., Reference [6, Chapter 2]). Thus, we assume pt − qs � 0
in the following.

First, we consider the case that p2 + q2 = s2 + t2. We claim that we can always write f =
(p,q)⊗d + (s, t )⊗d without loss of generality. To see this, we distinguish between the parity of
d . If d is odd, then (p,q)⊗d − (s, t )⊗d = (p,q)⊗d + (−s,−t )⊗d . If d is even, then we know from
f = (p,q)⊗d − (s, t )⊗d that f0 = p

d − sd and fd = q
d − td . Therefore, f0 > 0 and fd ≥ 0 imply

p2 > s2 and q2 ≥ t2, which contradicts p2 + q2 = s2 + t2.

We write Holant ( f ) as Holant( f |=2). Note that M ′ = [p q
s t ] is an invertible matrix due to

pt − qs � 0 and let M = M ′−1. It follows from Proposition 16 that Holant( f |=2) is equivalent

to Holant( f ′ | д′), where f ′ := f ·M ⊗d and д′ := (M−1)
⊗2 · (=2). We verify that this particular

Holant problem is either solvable in polynomial-time or equivalent to a ferromagnetic Ising model
without external fields. We have

f ′ = f ·M ⊗d =
(
(1, 0)⊗d + (0, 1)⊗d

)
M ′⊗dM ⊗d = (1, 0)⊗d + (0, 1)⊗d ,

and

д′ = (M−1)
⊗2 · (=2) = M ′⊗2 · (=2) = (p2 + q2,ps + qt ,ps + qt , s2 + t2)

T
.

If ps + qt = 0, then clearly Holant( f ′ | д′) is solvable in polynomial-time, since the edges in ev-
ery component of the instance must be assigned with the same value to contribute a non-zero
weight to the partition function. If ps + qt > 0, then we have that (p2 + q2) (s2 + t2) − (ps + qt )2 =

(pt − qs )2 > 0, and Holant( f ′ | д′) is a ferromagnetic Ising model without external fields. If

ps + qt < 0 and d is even, then a further transformation [1 0
0 −1] makes the middle term positive,

and it is a ferromagnetic Ising model again. Last, if ps + qt < 0 and d is odd, then Lemma 19 applies
and we are in the last case of the lemma.

The remaining case is that pt � qs and p2 + q2 � s2 + t2. If ��q�� = |t |, then ��p�� � |s | and we re-
place (p,q, s, t ) by (q,p, t , s ). This is equivalent to work with f . So from now on, we also as-

sume that ��q�� � |t |. Let M ′ = [w 1
1 −w] wherew ∈ R is a parameter to be set later. Then f ·M ′⊗d is

(q + pw,p − qw )⊗d + r (t + sw, s − tw )⊗d and

Pf ·M ′⊗d (z) = (q + pw + (p − qw )z)d + r (t + sw + (s − tw )z)d .

Recall that r = 1 or −1, so the zeros of this polynomial must satisfy��q + pw + (p − qw )z�� = |t + sw + (s − tw )z | . (8)

We show that by choosing appropriatew the roots to this equation are in the open left half-plane.
First consider p = q = 0. Since p2 + q2 � s2 + t2, it holds that (s, t ) � (0, 0). We will choose w so

that s − tw � 0, in which case the root to Equation (8) must be − t+sw
s−tw

. There are four cases.

• If t = 0, then let w = 1. It holds that s − tw = s � 0 and − t+sw
s−tw

= −w < 0.
• If s = 0, then let w = −1. It holds that s − tw = t � 0 and − t+sw

s−tw
= 1

w
< 0.

• If st < 0, then let w = 2s
t
< 0. It holds that s − tw = −s � 0 and − t+sw

s−tw
= t

s
+w < 0.

• If st > 0, then let w = 0. It holds that s − tw = s � 0 and − t+sw
s−tw

= − t
s
< 0.

The case of s = t = 0 is completely analogous.
Now we can make the further assumption that (p,q) � (0, 0) and (s, t ) � (0, 0). Let α = −p−qw

s−tw
∈

R be another parameter, which eventually will be set to 1 or−1. Asw = αs+p

αt+q
and ��q�� � |t |, the value

of the parameter w will be determined when the sign of α is chosen. Since p − qw = α (pt−qs )
αt+q

� 0,
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we let z1 = −q+pw

p−qw
, which is well-defined. Similarly, it holds that s − tw = qs−pt

αt+q
� 0, and we let

z2 = − t+sw
s−tw

. Equation (8) is equivalent to

|α | · |z − z1 | = |z − z2 |. (9)

Since |α | = 1, to make the roots to Equation (9) in the open left half-plane, it suffices to make sure
that

z1 + z2 =
(p2 + q2) − (s2 + t2)

α (qs − pt ) < 0. (10)

Since p2 + q2 � s2 + t2, we can let α = −1 if
(p2+q2)−(s2+t 2)

qs−pt
> 0, or let α = 1 otherwise.

We have showed that there is a matrix M ′ ∈ C2×2 such that the zeros of Pf ·M ′⊗d (z) are in
the open left half-plane. Since a polynomial has only a finite number of zeros, there is a con-

stant ε > 0 that Pf ·M ′⊗d (z) is Hε -stable. It holds that M ′(M ′)T = [1 +w2 0
0 1 +w2] = (1 +w2)I2 where

1 +w2 > 0 as w ∈ R. Let M = 1√
1+w2

M ′. Clearly MMT = I2 and M ∈ O2 (C). Since Pf ·M ′⊗d (z) =

(1 +w2)
d/2

Pf ·M⊗d (z), Pf ·M⊗d (z) has the same set of zeros as Pf ·M ′⊗d (z). So Pf ·M⊗d is also Hε -stable
for some ε > 0. �

5.2 b2 − 4ac = 0

When the characteristic polynomial of f has only one real root of multiplicity two, we show that
there always exists an orthogonal transformation to reduce f to a function whose local polynomial
is Hε -stable.

Lemma 21. Let f = [f0, f1, . . . , fd ] ∈ F ∗
a,b,c

with b2 − 4ac = 0, then there is an orthogonal matrix

M ∈ O2 (C) such that Pf ·M⊗d (z) is Hε -stable for some ε > 0.

Proof. If c = 0, then b = 0, since b2 − 4ac = 0. It implies that f0 = 0, which contradicts the def-
inition of F ∗

a,b,c
. Thus, c � 0.

Assume b = 0. Then a = 0, since c � 0 and b2 − 4ac = 0. In this case, f is of form [f0, f1, 0, . . . , 0]
and we can simply pick M = I2. Clearly Pf ·M⊗d (z) = f0 + d f1z, which is Hε -stable for some ε > 0,
since f0 > 0 and f1 ≥ 0.

Now we assume that b � 0. Since c � 0 and b2 − 4ac = 0, the equation cz2 + bz + a = 0 has one
real root with multiplicity two and we denote it by ϕ. Note that ϕ = − b

2c
� 0, since b � 0. It follows

from Proposition 18 that fk = xϕk + y ′kϕk−1 for 0 ≤ k ≤ d and some x ,y ′ ∈ R. Sinceϕ � 0, to ease

the presentation, we let y = y′

ϕ
and rewrite fk = xϕk + ykϕk . Clearly x = f0 > 0. By comparing

entries of every Hamming weight, one can verify the following form of f :

f = x (1,ϕ)⊗d + y
d∑

k=1

(1,ϕ)⊗(k−1) ⊗ (0,ϕ) ⊗ (1,ϕ)⊗(d−k ) .

Let M ′ = [ 1 w
−w 1 ] where w ∈ R is a parameter to be set later. Then,

f ·M ′⊗d = x (1 − ϕw,ϕ +w )⊗d + y
d∑

k=1

(1 − ϕw,ϕ +w )⊗(k−1) ⊗ (−ϕw,ϕ) ⊗ (1 − ϕw,ϕ +w )⊗(d−k ),

and

Pf ·M ′⊗d (z) = x (1 − ϕw + (ϕ +w )z)d + yd (1 − ϕw + (ϕ +w )z)d−1 (−ϕw + ϕz).
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The zeros of this polynomial must satisfy

(1 − ϕw + (ϕ +w )z)d−1 (x − (x + yd )ϕw + (xw + (x + yd )ϕ)z) = 0. (11)

Ifϕ +w � 0 and xw + (x + yd )ϕ � 0, then the roots of this equation are− 1−ϕw

ϕ+w
or− x−(x+yd )ϕw

xw+(x+yd )ϕ . We

choose appropriatew and check that these two roots are negative,ϕ +w � 0 and xw + (x + yd )ϕ �
0. Recall thatϕ � 0 and x = f0 > 0. We discuss various cases depending on the sign ofϕ and x + yd .

• If x + yd = 0, then the roots of Equation (11) are − 1−ϕw

ϕ+w
and − 1

w
. If ϕ < 0, then let w =

−2ϕ > 0 and − 1−ϕw

ϕ+w
=

1+2ϕ2

ϕ
< 0. If ϕ > 0, then let w = 1

2ϕ
> 0 and − 1−ϕw

ϕ+w
= − 1

2ϕ+ 1
ϕ

< 0.

Clearly ϕ +w � 0 and xw + (x + yd )ϕ � 0 in both cases.

• If ϕ > 0 and x + yd > 0, then let w = min
{

1
2ϕ
, x

2(x+yd )ϕ

}
> 0. It holds that

−1 − ϕw
ϕ +w

≤ − 1

2(ϕ +w )
< 0,

−x − (x + yd )ϕw

xw + (x + yd )ϕ
≤ − x

2(xw + (x + yd )ϕ)
< 0.

Whether w = 1
2ϕ

or w = x
2(x+yd )ϕ , it is clear that ϕ +w � 0 and xw + (x + yd )ϕ � 0.

• If ϕ > 0 and x + yd < 0, then fd = ϕd (x + yd ) < 0. This contradicts to fd ≥ 0.
• If ϕ < 0 and x + yd > 0, then consider fd = ϕd (x + yd ). If d is odd, then fd < 0. Contra-

diction. Thus, d must be even. Then ϕd−1 < 0. Since fd−1 = ϕd−1 (x + y (d − 1)) ≥ 0, it holds
that x + y (d − 1) ≤ 0. As x > 0, y must be negative, and then it contradicts to x + yd > 0.

• Ifϕ < 0 and x + yd < 0, then consider fd = ϕd (x + yd ). Ifd is even, then fd < 0. But fd must
be non-negative, so d must be odd. Then ϕd−1 > 0. Since fd−1 = ϕd−1 (x + y (d − 1)) ≥ 0, it
holds that x + y (d − 1) ≥ 0. Since d > 1, we can similarly deduce that x + y (d − 2) ≤ 0. This
contradicts that x > 0 and x + y (d − 1) ≥ 0.

We have showed that there is a matrixM ′ ∈ C2×2 such that the zeros of Pf ·M ′⊗d (z) are in the open
left half-plane. Since a polynomial has only a finite number of zeros, there is a constant ε > 0 that

Pf ·M ′⊗d (z) isHε -stable. It holds thatM ′M ′T = [1 +w2 0
0 1 +w2] = (1 +w2)I2 where 1 +w2 > 0 asw ∈

R. Let M = 1√
1+w2

M ′, and clearly M ∈ O2 (C). Since Pf ·M ′⊗d (z) = (1 +w2)
d/2

Pf ·M⊗d (z), Pf ·M⊗d (z)

has the same set of zeros as Pf ·M ′⊗d (z). So Pf ·M⊗d is also Hε -stable for some ε > 0. �

5.3 b2 − 4ac < 0

When the characteristic polynomial of f has two distinct complex roots, we show that the local
polynomial of f itself is Hε -stable.

Lemma 22. Let f = [f0, f1, . . . , fd ] ∈ F ∗
a,b,c

with b2 − 4ac < 0, then Pf (z) is Hε -stable for some

ε > 0.

Proof. It holds that c � 0, since otherwise b2 − 4ac ≥ 0. Since c � 0 and b2 − 4ac < 0, it follows

from Proposition 18 that fk = xϕk + yϕ
k

for 0 ≤ k ≤ d , where ϕ,ϕ are the two conjugate roots of
the polynomial cz2 + bz + a = 0 and x ,y ∈ C are constants. Clearly, x + y = f0 and xϕ + yϕ = f1.
Since f0 is real, it holds that 
(y) = −
(x ). Since f1 is real and f1 = xϕ + yϕ = (x + y)�(ϕ) +

i (x − y)
(ϕ), it holds that�(x ) = �(y). Thus, y = x and fk = xϕk + xϕ
k

for 0 ≤ k ≤ d . We write
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f = x (1,ϕ)⊗d + x (1,ϕ)
⊗d

and

Pf (z) = x (1 + ϕz)d + x (1 + ϕz)
d
.

The zeros of Pf (z) must satisfy

|x | · ��1 + ϕz��d = |x | · |1 + ϕz |d . (12)

Note that ϕ � 0, and x � 0, since otherwise x = 0 and f would be [0, 0, . . . , 0]. So, Equation (12) is
equivalent to �����z −

(
− 1

ϕ

) ����� =
������z − ��− 1

ϕ

�
������ .

Since − 1
ϕ

and − 1
ϕ

are the complex conjugates of each other, the roots of this equation and thus the

zeros of Pf (z) must lie on the real axis. However, if z ≥ 0, then

Pf (z) =
d∑

k=0

(
n

k

)
fk · zk > 0,

since f0 > 0. Thus, the zeros of Pf (z) are negative reals. Since a polynomial has only a finite number
of zeros, there is a constant ε > 0 such that Pf (x ) is Hε -stable. �

6 EXCEPTIONAL CASES

Section 5 covered all signatures in Fa,b,c unless f0 = fd = 0. We discuss the remaining cases in
this section. We will classify all of them, but the approximation complexity in one case (case (1) of
Theorem 1) is still open.

Let b ∈ R, and b < 0. Define Ab to be the following class:{
[f0, f1, . . . , fd ] | ∀0 ≤ k ≤ d − 2,

b2

4 cos2 π
d

fk + b fk+1 + fk+2 = 0, f0 = 0 and f1 > 0

}
.

Notice that Ab is a special case of Fa,b,c except that the parameter a depends on the arity d . In
fact, if f ∈ Ab , then we can scale f so that f has the following form:[

0, λ sin
π

d
, λ2 sin

2π

d
, . . . , λd−1 sin

(d − 1)π

d
, 0

]
,

for λ = − b
2 cos π

d
> 0. (Recall that b < 0.) Namely, fi = λi sin iπ

d
.

Lemma 23. Let f = [f0, f1, . . . , fd ] ∈ Fa,b,c for some d ≥ 3. If f0 = fd = 0, then there are three

possibilities:

(I) f ∈ Ab for some b < 0;

(II) [f0, f1, . . . , fd ] is of form [0, ∗, 0, 0, . . . , 0] or its reversal [0, 0, . . . , 0, ∗, 0];

(III) [f0, f1, . . . , fd ] is of form λ[0, 1, 0, μ, 0, μ2, . . . , 0, μ
d−2

2 , 0] for some λ, μ > 0 and even d .

Proof. We start by considering the case c = 0. Then, afk + b fk+1 = 0 for every 0 ≤ k ≤ d − 2.
It is easy to verify that f is identically 0 as f0 = fd = 0, which belongs to type II. Thus, we may
assume that c � 0 and normalise c to 1 in the following. There are two further cases depending on
whether b2 − 4a = 0.

The first case is when b2 − 4a � 0. It follows from Proposition 18 that f0 = x + y = 0 and fd =
xϕd

1 + yϕ
d
2 = 0. These two identities together imply

x
(
ϕd

1 − ϕd
2

)
= 0,
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which further implies either x = y = 0 (and therefore fk = 0 for all k) or ϕd
1 = ϕd

2 . We only need
to discuss the case when ϕd

1 = ϕd
2 and x � 0. There are two possibilities.

(1) If ϕ1

ϕ2
∈ R, then ϕ1 = −ϕ2 as b2 � 4a. It implies that d is even. This is type III.

(2) Otherwise, ϕ1

ϕ2
� R. In this case, b2 − 4a < 0 and ϕ1 and ϕ2 are conjugate of each other. By

swapping ϕ1 and ϕ2 if necessary, we may assume that 0 < argϕ1 < π . Then there exists

some integer 0 < t < d so that argϕ1 =
t π
d

and ϕ1

ϕ2
= e

2t π
d

i � R. Furthermore, t � d/2 as

otherwise ϕ1

ϕ2
∈ R. Since a > b2/4 ≥ 0, ��ϕ1

�� = ��ϕ2
�� = √a, and

fk = x
(
ϕk

1 − ϕk
2

)
= 2x · a

k
2

(
sin

tkπ

d

)
i .

Recall that we have the further requirement fk ≥ 0 for every 0 ≤ k ≤ d . For k = 1, as 0 <
t < d , sin t π

d
> 0, and thus x must lie on the negative imaginary axis. Then, it must be that

sin tkπ
d
≥ 0 for all 0 ≤ k ≤ d . If t > 1, then taking k = � d

t
� + 1 ≤ d implies a contradiction.

Thus, t = 1.
The assumption 0 < argϕ1 < π implies that cos π

d
= −b

2
√

a
> 0. Thus, b < 0 and a =

b2

4 cos2 π
d

. This verifies that f is of type I.

At last we turn to the case that b2 − 4a = 0. It follows from Proposition 18 that fk = xϕk +

ykϕk−1 where ϕ = −b/2. Then f0 = 0 means that x = 0, and fd = 0 means that yϕd−1 = 0. Thus,
either y = 0 or ϕ = 0, and any of the two cases implies that f is of type II. �

Next, we show that type II and type III signatures are equivalent to approximately counting
perfect matchings in general graphs. Denote by ExactOned the function [0, 1, 0, . . . , 0] of arity d ,
and by EO the (infinite) set

{
ExactOned | d ∈ N+

}
. Then Holant(EO ) is the problem of counting

perfect matchings in a graph, denoted #PM. (There is only one function for each degree/arity. So
the mapping from vertices to functions is obvious for the infinite set EO .)

For type III signatures, since multiplying by a constant does not change the complexity, we
may assume that λ =

√
μ. Then, f = [0, λ, 0, λ3, 0, . . . , λd−1, 0] with λ > 0. We will assume λ < 1.

This is because that if λ = 1, then the problem is tractable exactly,1 and if λ > 1, then taking its
reversal makes λ < 1. We adopt the approximation-preserving reduction ≤AP from Reference [13].
We often construct a gadget to express one constraint function via other functions. We call these
gadget reductions and denote them by ≤G. These reductions are parsimonious and are special cases
of ≤AP.

Lemma 24. Let d ≥ 4 be an even integer, and 0 < λ < 1. If f = [0, λ, 0, λ3, 0, . . . , λd−1, 0] of arity

d , then

Holant(ExactOne4) ≤AP Holant( f ).

Proof. Applying a holographic transformation by T = [1 0
0 λ], we have that

Holant( f ) ≡ Holant
(
f · (T −1)

⊗d | T ⊗2· =2

)
≡ Holant([0, 1, 0, 1, 0, . . . , 1, 0] | [1, 0, μ]),

1This falls into Reference [8, case 3 of Theorem 31]. More straightforwardly, the problem is to count the number of sub-
graphs where all vertices have an odd degree. For a connected graph G , the answer is 2|E |−|V |+1 if G has an even number
of vertices, and 0 otherwise.
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Fig. 2. A gadget for type III signatures, where squares are [0, 1, 0], and circles are [0, 1, 0, 1, 0]. All edges,

which can be viewed as degree two nodes on the right side in the bipartite formulation, have signatures

[1, 0, μ]. They are not drawn explicitly to avoid clutter.

where 0 < μ = λ2 < 1. Thus, Holant( f ) is to count the number of odd subgraphs with edge weight
μ in a d-regular graph. Here we adopted the bipartite Holant formulation to facilitate the holo-
graphic transformation. We will refer to vertices, which have signatures [0, 1, 0, 1, 0, . . . , 1, 0], as
the left side, and to edges, which have signatures [1, 0, μ] and are viewed as degree 2 nodes, as the
right side.

We may add a self-loop to a vertex on the left by connecting it to an “edge” node on the right via
two parallel edges. This operation simply reduces the degree of the vertex by 2, while leaving the
constraint on the vertex unchanged, namely, that the vertex still must have an odd degree in the
subgraph. Thus, with sufficiently many self-loops, we may simulate a binary disequality [0, 1, 0]
as well as an arity-4 signature [0, 1, 0, 1, 0] on the left side of the bipartite Holant formulation.

Consider the gadget in Figure 2. We can use it effectively as a binary function with inputs (x1,x2).
Straightforward calculation yields its signature (2μ2 + 2μ3)[1, 0, 1], and it is on the left (the two
dangling edges do not have weights). Finally, with [1, 0, 1] on the left, we can form a path of length
n, and the resulting binary function is [1, 0, μn] on the right. More formally, we have the following
chain of reductions:

Holant ([0, 1, 0, 1, 0, . . . , 1, 0] | [1, 0, μ]) ≥G Holant ([0, 1, 0], [0, 1, 0, 1, 0] | [1, 0, μ])

≥G Holant ([1, 0, 1], [0, 1, 0, 1, 0] | [1, 0, μ])

≥G Holant ([0, 1, 0, 1, 0] | [1, 0, μn]) .

The last problem is counting odd subgraphs with μn edge weights in 4-regular graphs and μ < 1.
Notice that the size of the construction scales linearly in n but the weight scales exponentially
in n. As the edges have exponentially small weights, the contribution from all odd subgraphs
is dominated by the contribution from minimum odd subgraphs, and minimum odd subgraphs
are exactly perfect matchings. Thus, we can approximate the number of perfect matchings in a
4-regular graph G = (V ,E) if we could approximate Holant ([0, 1, 0, 1, 0] | [1, 0, μn]) on the same
graph, where we choose n so that μn ≤ 2−|E | . This finished the reduction. �

Similar ideas can also handle the last case in Lemma 20, after taking its reversal and renaming λ.

Lemma 25. Let d ≥ 3 be an odd integer, and 0 < λ < 1. If f = [0, λ, 0, λ3, 0, . . . , λd ] of arity d , then

Holant(ExactOne3) ≤AP Holant( f ).

Proof. As in the proof of Lemma 24, we do the same holographic transformation byT = [1 0
0 λ]:

Holant( f ) ≡ Holant([0, 1, 0, 1, 0, . . . , 1] | [1, 0, μ]),

where 0 < μ = λ2 < 1. Once again, with sufficiently many self-loops, we get [0, 1, 0, 1] and [0, 1]
on the left side. Connecting [0, 1] back to [0, 1, 0, 1] through [1, 0, μ] yields μ[1, 0, 1] on the left.
Thus, similar to the proof of Lemma 24, we can simulate [1, 0, μn] on the right. More formally, we
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Fig. 3. A gadget for weighted equalities. There are n1 edges

between u and u ′, and n2 edges between u ′ and v ′.
Fig. 4. A gadget to create [0, 1, 0, 1].

Fig. 5. A gadget to create [1, 0, 1, 0, . . . , 1] or [0, 1, 0, 1, . . . , 0].

have the following chain of reductions:

Holant ([0, 1, 0, 1, 0, . . . , 1] | [1, 0, μ]) ≥G Holant ([0, 1], [0, 1, 0, 1] | [1, 0, μ])

≥G Holant ([1, 0, 1], [0, 1, 0, 1] | [1, 0, μ])

≥G Holant ([0, 1, 0, 1] | [1, 0, μn])

≥AP Holant(ExactOne3). �

However, we have the following lemma.

Lemma 26. Let d ≥ 3 be an integer and 0 < λ < 1. Let f = [0, λ, 0, λ3, 0, . . . ] be a symmetric sig-

nature of arity d . Then,

Holant( f ) ≤AP #PM.

Proof. First, by the same holographic transformations as in the proofs of Lemmas 24 and 25,

Holant( f ) ≡ Holant([0, 1, 0, 1, 0, . . . ] | [1, 0, μ]),

where μ = λ2 > 0.
Consider the gadget in Figure 3, where all vertices are the “exact one” function, namely,

[0, 1, 0, . . . , 0]. It is easy to see that this gadget is equivalent to a weighted equality [1, 0, n2
n1

]. Thus,
we can use it to arbitrarily closely approximate [1, 0, μ] by tuning the integers n1 and n2 for any
μ > 0. To be more precise, suppose that we want approximation error ε . Then, we need to find

n1 and n2 such that μ ≤ n2
n1
≤ μ

(
1 + ε

2k

)
where k is the number of occurrences of [1, 0, μ] in the

instance. If so, then we replace every occurrence of [1, 0, μ] by the gadget and the multiplicative

error is at most
(
1 + ε

2k

)k
< 1 + ε . To find n1 and n2 and bound their sizes, if μ is rational, then

we can find constants n1 and n2 such that n1
n2
= μ. If μ is not rational, then it will depend on the

model of computation. For finite precision models, we need to query and truncate μ up to Ω(ε/k )
precision, and the resulting n1 and n2 are bounded linearly in k/ε .

In addition, consider the gadget in Figure 4, where, once again, all vertices are [0, 1, 0, 0]. The
resulting signature is [0, 1, 0, 1].

A simple calculation verifies that a sequence of d signatures [0, 1, 0, 1] connected together, as in
Figure 5, yields a signature [0, 1, 0, . . . , 1, 0] of arity d + 2 if d is odd, or a signature [1, 0, 1, 0, . . . , 1]
of arity d + 2 if d is even. In the even case, to get [0, 1, 0, 1, . . . , 0], we simply connect one of its
dangling edges with [0, 1, 0]. Formally, we have the following sequence of reductions:

Holant ([0, 1, 0, 1, 0, . . . ] | [1, 0, μ]) ≤G Holant({[0, 1, 0, 1, 0, . . . ], [1, 0, μ]})
≤AP #PM. �
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Fig. 6. A gadget to create ExactOned .

Lemmas 24, 25, and 26 together imply the following:

Holant(ExactOne4) ≤AP Holant( f ) ≤AP #PM, if d is even, (13)

Holant(ExactOne3) ≤AP Holant( f ) ≤AP #PM, if d is odd, (14)

where f = [0, λ, 0, λ3, 0, . . . ] for some 0 < λ < 1 has arity d ≥ 3. Note that Holant(ExactOne3) or
Holant(ExactOne4) is just an alias of counting perfect matchings in 3- or 4-regular graphs, which
is equivalent to #PM in approximation. This is a folklore fact, and is shown in the next couple of
lemmas.

Lemma 27. Holant(ExactOne3) ≤AP Holant(ExactOne4).

Proof. Note that a self-loop on [0, 1, 0, 0, 0] gives [0, 1, 0], and connecting it back to [0, 1, 0, 0, 0]
yields [1, 0, 0]. Thus,

Holant([0, 1, 0, 0, 0], [1, 0, 0]) ≤G Holant([0, 1, 0, 0, 0]).

Given an instanceG (namely, a 3-regular graph) of Holant([0, 1, 0, 0]), consider a disjoint union of
G and its copy G ′. We add a new vertex u for each pair v and v ′, and connect u to both v and v ′.
Now all original vertices in G and G ′ have degrees exactly 4. Put [0, 1, 0, 0, 0] on all these vertices,
and [1, 0, 0] on the newly introduced degree 2 vertices. It is easy to see that the partition function
of this new instance is the square of the number of perfect matchings of G. Thus, we have the
following reduction chain:

Holant([0, 1, 0, 0]) ≤AP Holant([0, 1, 0, 0, 0], [1, 0, 0])

≤G Holant([0, 1, 0, 0, 0]). �

However, approximate counting perfect matchings in 3-regular graphs is as hard as that in gen-
eral graphs.

Lemma 28. #PM ≤AP Holant(ExactOne3).

Proof. Consider the gadget in Figure 6.
Notice that if we put [0, 1, 0, 0] on the two degree three vertices, and [0, 1, 0] on the middle

vertex, the resulting signature is [0, 1, 0, 0, 0]. More generally, if we replace one of the degree three
vertex by ExactOned , then the resulting signature is ExactOned+1. Namely, using this gadget,
we can simulate the whole set of EO , and

#PM ≤G Holant([0, 1, 0, 0], [0, 1, 0]).

Moreover, a self-loop on [0, 1, 0, 0] gives [0, 1], and connecting back to it gives [1, 0, 0]. By using
the same squaring trick in Lemma 27, we can use [1, 0, 0] as [1, 0]. Thus, we have the following
reduction chain:

#PM ≤G Holant([0, 1, 0, 0], [0, 1, 0])

≤G Holant([0, 1, 0, 0], [1, 0])

≤AP Holant([0, 1, 0, 0], [1, 0, 0])

≤G Holant([0, 1, 0, 0]). �
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Holant problems defined by type II signatures are counting perfect matchings in d-
regular graphs. Clearly, by doing sufficiently many self-loops, either Holant(ExactOne3) ≤AP
Holant(ExactOned ) or Holant(ExactOne4) ≤AP Holant(ExactOned ), depending on the parity
of d . Thus, combining this fact with Lemma 27, Lemma 28, (13) and (14), we have the following
result:

Lemma 29. Let f = [0, 1, 0, λ2, 0, . . . ] for some 0 ≤ λ < 1. Then,

Holant( f ) ≡AP #PM.

Notice that in Lemma 29, we factored out λ from the expression of f in Equations (13) and (14)
to cover type II of Lemma 23 (λ = 0). Lemma 29 also covers type III of Lemma 23 and the last case
in Lemma 20.

7 PROOF OF MAIN THEOREMS

We are now ready to assemble all the ingredients to prove our main theorems. We restate Theo-
rem 1 for convenience.

Theorem 1. Let f = [f0, f1, . . . , fd ] be a symmetric constraint function of arity d ≥ 3 satisfying

generalised second-order recurrences, and fi ≥ 0 for all 0 ≤ i ≤ d . There is a fully polynomial-time

(deterministic or randomised) approximation algorithm for Holant( f ), unless, up to a non-zero factor,

f or its reversal is in one of the following form:

• [0, λ sin π
d
, λ2 sin 2π

d
, . . . , λi sin iπ

d
, . . . , 0] for some λ > 0;

• [0, 1, 0, λ, 0, . . . , 0, λ
d−2

2 , 0] if d is even, or [0, 1, 0, λ, 0, . . . , 0, λ
d−1

2 ] if d is odd, for some 0 ≤
λ < 1.

Moreover, in the latter case, approximating Holant( f ) is equivalent to approximately counting

perfect matchings in general graphs.

Proof. We apply Lemmas 20, 21, and 22. Then one of the following must happen:

(1) f0 = fd = 0; or
(2) f or f is [1, 0, λ2, 0, λ4, 0, . . . ] for some λ > 1 and has an odd arity; or
(3) Holant ( f ) can be solved exactly in polynomial-time; or

(4) there is an invertible matrix M ∈ C2×2 such that Holant( f ·M ⊗d | (M−1)
⊗2 · (=2)) is a

ferromagnetic two-spin system; or
(5) there is an orthogonal matrix M ∈ O2 (C) such that either Pf ·M⊗d (z) or P

f ·M⊗d (z) is Hε -

stable for some ε > 0, where f is the reversal of f .

We are done in Case (3), as well as in Case (5) by Proposition 17 and Theorem 15. In Case (4),
we invoke the FPRAS by Jerrum and Sinclair [22]. In Cases (1) and (2), we are in the desired
form of the theorem by Lemma 23. (In case μ > 1 in Lemma 23, we can take its reversal so that
μ < 1, and if μ = 1, then exact counting is tractable [8].) Finally, the approximation complexity of
[0, 1, 0, λ, 0, λ2, 0, . . . ] signatures is handled in Lemma 29. �

Remark. It is worth noting that our algorithm applies beyond regular graphs. In fact, for any
finite family of signatures F , we can define Holant (F ) as the problem of computing the parti-
tion function on a graph G, where each vertex v of G is associated with a function fv ∈ F . It is
straightforward to adapt the algorithm described in the proof of Theorem 1 for one to solve
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Holant (F ).2 It is not hard to see the adaptation provides an efficient approximation algorithm for
Holant (F ) as long as there exists an orthogonal matrix M ∈ O2 (C) and ε > 0 such that Pf ·M⊗d is
Hε -stable for every f ∈ F , where d is the arity of f . Note that here M needs to work for the whole
family F and cannot depend on local signatures.

For example, we can let F be the family of signatures for matchings up to arity d , or the family
of signatures for edge covers up to arity d . In both cases one can simply take M to be the identity
matrix and verify the condition above. Our algorithm thus recovers previously known determin-
istic approximation algorithms of counting matchings [4] and counting edge covers in bounded
degree graphs [26] with a different approach. Notice that the finiteness of F imposes a degree
bound on the input graphs.

However, even for the same tuple (a,b, c ), signatures in Fa,b,c may require different M to be
Hε -stable. It is not clear how to obtain an algorithm in such cases.

We deduce Theorem 2 from Theorem 1 by noting that all ternary signatures satisfy gener-
alised second-order recurrence relations. Therefore, we only need to deal with the case where
f = [0,a,b, 0] for some a,b > 0. We design an FPRAS for Holant ( f ) using the machinery called
“winding” developed in References [20, 30]. The construction is sketched below without getting
into too much technical details, which is out of the scope of the current article.

7.1 Windable and Strictly Terraced Functions

The FPRAS is obtained via MCMC approach, namely, we design a Markov chain to sample from
certain distribution induced by Holant ( f ). Instead of directly doing so, we break every edge into
two half edges and then sample from the state space consisting of all consistent edge assignment
and assignments with at most two inconsistencies. It has been shown by McQuillan [30] that the
Markov chain mixes rapidly as long as the signature f is windable. The following definition of
windable functions is from Reference [20].

Definition 30. For any finite set J and any configuration x ∈ {0, 1} J , defineMx as the set of par-
titions of {i | xi = 1} into pairs and at most one singleton. A function f : {0, 1} J → R≥0 is windable

if there exist values B (x ,y,M ) ≥ 0 for every x, y ∈ {0, 1} J and all M ∈ Mx⊕y, satisfying

• f (x) f (y) =
∑

M ∈Mx⊕y
B (x, y,M ) for all x, y ∈ {0, 1} J , and

• B (x, y,M ) = B (x ⊕ S, y ⊕ S,M ) for all x, y ∈ {0, 1} J and all S ∈ M ∈ Mx⊕y.

Here x ⊕ S denotes the vector obtained by changing xi to 1 − xi for the one or two elements i in S .

The definition of windable functions is technically involved. One can use the linear algebraic
characterization for symmetric functions developed in Reference [20] to verify that [0,a,b, 0] with
nonnegative a and b is indeed windable:

Theorem 31 ([20]). A symmetric function f : {0, 1}3 → R≥0 is windable if and only if for ev-

ery pinning д of f with arity m ≤ 3, the function h(x ) = [h0,h1, . . . ,hm] := д(x )д(x̄ ) satisfies the

following condition: The linear equation Amx = h has a nonnegative solution x ≥ 0 where h =

[h0,h1, . . . ,h �m
2 �] and

A1 = [1], A2 =

[
1 0
0 1

]
, A3 =

[
3 0
1 2

]
.

2The main adaptation is to show that Zi (G ) is still a BIGCP when more than one constraint function are present. Since F
is finite, we can therefore view functions in F as colors and enumerate vertex colored induced subgraphs instead of ordinary
induced subgraphs in the proof of Lemma 14. A similar technique already appears in Reference [31].
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However, to obtain an FPRAS for Holant ( f ), one requires the ratio between the total weight
of nearly consistent assignments and that of consistent assignments is bounded by a polynomial
in the size of the instance. This property is captured by the notion of “strictly terraced” defined
in Reference [30].

Definition 32. A function f : {0, 1} J → R≥0 is strictly terraced if for every x ∈ {0, 1} J and all
i, j ∈ J :

f (x) = 0⇒ f (x ⊕ ei ) = f (x ⊕ ej ),

where ei is the ith standard basis vector.

It is clear that [0,a,b, 0] is strictly terraced when a,b are nonzero. In Reference [30], it is shown
that the bounded ratio property holds for Holant instances with strictly terraced constraints.
Therefore, we obtain an efficient Gibbs sampler for Holant( f ), which can be turned into an FPRAS
to compute the partition function via self-reduction [24]. Note that we only need self-reducibility
for windable functions, which is straightforward to verify by Theorem 31.

Remark. The remaining open case in Theorem 1 is when f ∈ Ab . Numerical evidence suggests
that these functions are windable, via the criteria in Reference [20]. We conjecture that this is in-
deed the case, which would imply FPRAS for computing the partition functions of type I signatures,
since these functions are strictly terraced as well.
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