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Abstract

Inspired by a recent line of work in online algo-
rithms with predictions, we study the constrained
adversary model that utilizes predictions from a
different perspective. Prior works mostly focused
on designing simultaneously robust and consis-
tent algorithms, without making assumptions on
the quality of the predictions. In contrary, our
model assumes the adversarial instance is con-
sistent with the predictions and aim to design al-
gorithms that have best worst-case performance
against all such instances. We revisit classical
online selection problems under the constrained
adversary model. For the single item selection
problem, we design an optimal algorithm in the
adversarial arrival model and an improved algo-
rithm in the random arrival model (a.k.a., the sec-
retary problem). For the online edge-weighted
bipartite matching problem, we extend the clas-
sical Water-filling and Ranking algorithms and
achieve improved competitive ratios.

1. Introduction

In the classical online algorithm literature, the performance
of an algorithm is evaluated by its competitive ratio in the
worst case. This principle has guided the design of online
algorithms for decades and achieved great successes in many
areas, including caching, scheduling, online matching, etc..
However, the worst case analysis is often too pessimistic
when applied in practice.

A recent trend has been interested in incorporating machine-
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learned advice to online algorithm designs. In particular,
the algorithm is given some extra information about the
instance (a.k.a. prediction) that are typically calculated by
machine learning algorithms. The goal is then to design
a simultaneously consistent and robust algorithm without
knowing the quality of the prediction, meaning that the algo-
rithm has good performance when the prediction is accurate
and the worst-case performance of the algorithm is also
preserved. This framework is first proposed by Purohit et
al. (Purohit et al., 2018) for the ski-rental problem and the
non-clairvoyant scheduling problem. Later, it is extended
to online caching (Lykouris & Vassilvitskii, 2018; Rohatgi,
2020; Jiang et al., 2020; Antoniadis et al., 2020a), online
covering problems (Bamas et al., 2020b), energy minimiza-
tion (Bamas et al., 2020a), and secretary and online bipartite
matching problems (Antoniadis et al., 2020b;a).

In this paper, we study the constrained adversary model,
to utilize the predictions from a different perspective. In
contrary to the robustness-consistency framework, we make
assumptions on the quality of the prediction. Instead of a
point prediction without any accuracy guarantee, we con-
sider a prediction interval [p;, p,] that covers the value of
the real instance. l.e., the input instance must be consistent
with the prediction interval. Our goal is to design an algo-
rithm that has the best worst-case competitive ratio against
this constrained adversary.

Our model is motivated by the confidence intervals from
statistics. In statistics, each confidence interval is associated
with a coverage probability, meaning the probability that the
true value is covered by the interval. It is straightforward
to combine statistics methods with our framework with pre-
dictions. As an illustration, we can start with a confidence
interval of arbitrary coverage probability 1 — § and use it as
the prediction interval of our algorithm. Straightforwardly,
our competitive analysis stands with the probability at least
1—-9.

1.1. Our Models and Contributions

Under the constrained adversary model, we revisit several
online selection problems, including the secretary problem
and the online matching problem, studied by Antoniadis
et al. (Antoniadis et al., 2020b), and adapt the prediction
model therein.
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Single Item Selection. We illustrate our constrained ad-
versary model in the basic online single-item selection prob-
lem. Let there be n items arriving sequentially. In every
round ¢, the value of the ¢-th item is revealed, and the algo-
rithm decides immediately and irrevocably whether to select
it. If the algorithm decides to select an item, the process
ends; otherwise, the process continues to the next round.
The goal is to maximize the selected value and we compare
against the largest value of all items in hindsight. Suppose
we are given a prediction interval [py, p,] that covers the
largest value among all items. In other words, the optimal
value must fall in the interval. Define the ratio between the
upper and lower bounds of the interval, i.e. p—;, to be the
accuracy of our prediction interval and denote it by A. The
closer A is to 1, the better the quality of the prediction.

We make a comparison to the prediction model of Anto-
niadis et al. (Antoniadis et al., 2020b). They assume a
point prediction p that predicts the optimal value and use
1 = |OPT — p| to evaluate the error of the prediction. Given
a prediction interval [py, p, ], an equivalent interpretation is
to set the prediction to be p = 2£EP» and assume that the
error 1) < PuPL,

We define II(py, p,,) to be the family of all instances that
has the optimal value between p; and p,, and aim to design
algorithms that maximize the worst-case competitive ratio
against the constrained adversary, i.e.
) ALG(T)
ALG 1eni(pe-p.) OPT(T)’

We show that the optimal competitive ratio only depends
on the accuracy of the prediction interval. And there is an
intuitive analog to the robustness-consistency framework for
the extreme values of A. Indeed, the competitive ratio when
A =1 corresponds to the consistency, and when A — oo
it corresponds to the robustness, although we adapt the
max-min benchmark and the robustness-consistency model
focuses on the trade-offs between the two values.

Remarkably, when Antoniadis et al. (Antoniadis et al.,
2020b) applied the robustness-consistency framework to
the single item selection problem, the random order arrival
assumption is necessary, since otherwise, no algorithm can
be robust. Generally, the robustness-consistency framework
only extends those classical online algorithm problems that
admit non-trivial theoretical guarantees. In contrast, by
restricting the power of the adversary, the constrained adver-
sary model poses a systematic way for studying online al-
gorithms with predictions and raises technically interesting
questions, even when the classical setting without prediction
is trivial.

In Section 3, we design an optimal competitive algorithm
for the adversarial arrival setting, for any fixed prediction
accuracy A.

In Section 4, we extend our model to the random arrival
order setting, i.e. the secretary problem. This is the most
technical part of our paper. The main challenge is that the
classical algorithm for the secretary problem is designed
to maximize the probability of catching the largest item,
while we aim to maximize the expectation of the value of
the selected item. We consider a family of time-dependent
threshold algorithms that achieve optimal competitive ratios
in the extreme cases: 1) the competitive ratio is 1 when
A =1, i.e. the prediction is exact; 2) the competitive ratio
is % when A — oo, matching the best possible ratio of
the secretary problem. For values in between the extreme
cases, we lower bound the competitive ratio of our algorithm
by a non-linear programming and use computer-assisted
analysis.

Online Bipartite Matching. We further extend our re-
sults to the online edge-weighted bipartite matching prob-
lem. Consider an underlying edge-weighted bipartite graph
G = (LUR, E,w). The offline vertices L are known in
advance and the vertices in R arrive online. Upon the arrival
of a vertex, its incident edges are realized as well as their
weights. The algorithm decides to match it to an unmatched
neighbor or leave it unmatched. Our goal is to maximize
the total weight of the selected matching and we compare
against the optimal matching in hindsight. We adapt the
prediction model of (Antoniadis et al., 2020b) to our setting.
The algorithm is given a prediction interval per offline vertex
and is guaranteed that in the optimal matching, the weight
of the incident edge of v falls in its prediction interval, for
every v € L. The prediction accuracy of each vertex is
defined to be the ratio between the upper and lower bounds
of its prediction interval, and the prediction accuracy of
the instance is defined to be the maximum accuracy over
all vertices. As observed by Antoniasdis et al. (Antoniadis
et al., 2020b), when the predictions are accurate, the online
edge-weighted bipartite matching problem degenerates to
the vertex-weighted version of the problem and the optimal
competitive ratio is 1 — % (Aggarwal et al., 2011).

In Section 5, we generalize the algorithm of Aggarwal (Ag-
garwal et al., 2011) to our constrained adversary setting.
Prior to our work, the most popular model for studying on-
line edge-weighted bipartite matching is to introduce the
free-disposal of edges, so that non-trivial theoretical guaran-
tees is achievable. Our model provides an alternative option.
Our competitive ratio matches the optimal 1 — % ratio when
the prediction accuracy equals 1 and converges to the opti-
mal competitive ratio achieved in the single item setting up
to lower order terms when the prediction accuracy goes to
infinity.

Compare to Sun et al.(2017)’s work Our matching
model is closely related to the bounded weight online bi-
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partite matching problem studied by Sun et al. (Sun et al.,
2017). They assume all given edge weight is bounded in
an interval [, 3] while we have a prediction interval for
every offline vertex. Because we can omit all the edges
outside the prediction interval, it’s the same to say that
each offline vertex v has an individual edge weight range
[y, By]. In Sun et al.’s algorithm, they directly run ranking
on a randomly generalized subgraph with a guessed edge-
weight range [« - 2, o - 2171], and they suffer a factor (1 —
1/e) (from RANKING) - O(1/log g) (from guessing) =
O(1/1log g) However, our algorithm combined our exactly
optimal single item selection algorithm and RANKING via
a primal-dual method which can get a better competitive
ratio than the product of the two factors. To sum up, the
two models are the same in the single item case, and we
make the competitive ratio exactly optimal (they can archive
O(1/log g) by guessing). In the multi-item case, our algo-
rithm can be transferred to the bounded weight setting, and
we improve the competitive ratio of Sun et al.’s algorithm at
any A > 1 (A = g) not only because we use the optimal
single-item selecting idea but also because we combine the
RANKING idea in a better way.

1.2. Related Work

The most related work is the recent NIPS paper by (Anto-
niadis et al., 2020b), that includes a comprehensive review
of the related literature. We only discussed the most related
ones here.

Algorithms with predictions. The constrained adversary
model is previously considered by Purohit (Purohit, 2019)
for the ski-rental problem in his TTIC talk. In their model,
the instance is guaranteed to be at least y days and improved
competitive algorithm is designed. This is the only work
that studies the constrained adversary model in online al-
gorithms, to the best of our knowledge. Most works in
the algorithms with predictions literature aim to balance
the consistency and robustness of the algorithm. Medina
and Vassilvitskii (Munoz & Vassilvitskii, 2017) studied the
revenue optimization problem, with a prediction of the bid
value. Purohit et al. (Purohit et al., 2018) considered the ski
rental problem and the Non-clairvoyant scheduling problem,
and they gave the competitive ratios as a function of the pre-
diction error. For the ski-rental setting, Wei and Zhang (Wei
& Zhang, 2020) provided the tight robustness-consistency
trade-off; Gollapudi et al. (Gollapudi & Panigrahi, 2019)
further extended it to the multiple predictors, and they pro-
vided and evaluated experimentally tight algorithms. In
contrast to viewing the prediction generation as a black
box, Anand et al. (Anand et al., 2020) customizing machine
learning algorithms directly for optimization tasks in the
ski rental problem. Lykouris and Vassilvitskii (Lykouris &
Vassilvitskii, 2018) studied the caching problem with pre-

dictions and succeeded in incorporating the prediction to
the Marker algorithm (Fiat et al., 1994). Later the result
has been improved by Rohatgi (Rohatgi, 2020), Jiang et
al. (Jiang et al., 2020) and Antoniadis et al. (Antoniadis
et al., 2020a). Lattanzi et al. (Lattanzi et al., 2020) and
Mitzenmacher (Mitzenmacher, 2020) studied the online
scheduling problem with predictions in different perspec-
tives. Notice that Mitzenmacher introduce a new quality
measure called the price of misprediction to evaluate his al-
gorithm. Bhaskara et al. (Bhaskara et al., 2020) considered
the online linear optimization problem with prediction. For
readers who are interested, Roughgarden’s book (Roughgar-
den, 2021) includes a chapter algorithms with predictions.

Secretary Problem. The secretary problem is a funda-
mental model in online stopping and online optimization.
It is first formulated by Dynkin (Dynkin, 1963), in which
Dynkin designed a algorithm with 1/e probability of select-
ing the best candidate. The 1/e ratio is proven to be the
best possible ratio from different perspectives (Ferguson
et al., 1989; Correa et al., 2019). To consider more than one
accepted candidate, the matroid secretary problem has been
studied by Babaioff et al. (Babaioff et al., 2018), and they
presented an O(log k)-competitive algorithm for general
matroids (where k is the rank of the matroid). A closely re-
lated setting is the known i.i.d setting, in which the value of
each item is drawn independently from a known distribution
and the objective is to maximize the probability of selecting
the best item. Gilbert and Mosteller(Gilbert & Mosteller,
1966) proposed an algorithm with winning probability 0.58
and their policy has been proved to be optimal in several
follow-up works (Samuels, 1982; Berezovskiy & Gnedin,
1984; Gnedin, 1996).

Online Bipartite Matching. The online bipartite match-
ing model is proposed by Karp et al.(Karp et al., 1990), and
they designed the celebrated RANKING algorithm with opti-
mal competitive ratio (1—1/e). Later, Aggarwal (Aggarwal
et al., 2011) studied the vertex-weighted generalization and
obtained the same optimal competitive ratio (1 —1/e). Non-
trivial competitive algorithms are impossible in the natural
edge-weighted extension of the online bipartite matching
problem. As discussed in the introduction, the most popular
model is to allow free disposal of edges. A recent break-
through is by Fahrbach et al. (Fahrbach et al., 2020), which
achieved the first non-trivial competitive ratio 0.5086. Be-
sides the weight extension, Huang et al. (Huang et al., 2018;
2019a; 2020a) studied the fully online version of the online
matching problem, which allows all vertices to arrive online
and the underlying graph to be non-bipartite. They prove
RANKING can archive 0.5671 and 0.5211 competitive ra-
tio in the bipartite and general case. Recently, Huang et al.
(Huang et al., 2020b) proposed a better algorithm that beat
RANKING in the bipartite case, which improves the com-
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petitive ratio to be 0.569. Stochastic models are also con-
sidered in the online bipartite matching literature. Karande
et al. (Karande et al., 2011) and Mahdian et al. (Mahdian
& Yan, 2011) studied the random arrival model for the un-
weighted version of the online bipartite matching problem,
and they proved the competitive ratio of Ranking is at least
0.696. Huang et al. (Huang et al., 2019b) considered the
vertex-weighted version with random arrivals and proposed
an algorithm with competitive ratio 0.653.

2. Preliminaries

We set up formal notations to describe the online selection
problems studied by our paper. In the single item setting,
let there be n items and let {v; };¢[,) be their values. The
algorithm is given a prediction interval [py, p,,] upfront and
is guaranteed that the optimal value falls in the interval. We
shall refer to py as the prediction and define the accuracy of
the prediction to be A &f ;—Z

In the online bipartite matching problem, there is an underly-
ing edge-weighted bipartite graph G = (LU R, E, w). Let
[pv, Aypy] be the prediction interval of v, for each offline
vertex v € L. In the optimal matching M™*, every vertex
v € L is matched to an edge with weight between p,, and
A,p,. We refer to p,, as the prediction of v and A, as the
prediction accuracy of vertex v. The prediction accuracy A
of the instance is defined to be max,cy, A,.

For all results achieved in this paper, our competitive ratios
depend solely on the prediction accuracy of the instance.

3. Single Item: Adversarial Arrivals

In this section, we study the single item selection problem
with worst case arrival order. Without loss of generality, we
assume the prediction interval to be [1, A] and the optimal
value v* = max; v; is guaranteed to be in [1, A]. We start
with a deterministic fractional algorithm and then provide a
lossless online rounding of the fractional algorithm. Finally,
we prove the optimality of our algorithm.

Algorithm 1 Online Singlatioe Item Selection with Predic-
tion

1: Fix a non-decreasing function g : [0, 1] — [1, A].

2: Let z = 0. {x is the portion that have been selected. }
3: Upon the arrival of an item ¢ with value v;:

4. Ifv; > g(x),

5 z « g (v;) {We select (¢! (v;) — ) fraction of

i, where g’ (v) &ef max{z | g(z) < v}.}

Fractional Algorithm. Our algorithm admits an intuitive
interpretation. At any step of the instance, we maintain a
threshold based on the currently selected portion of our al-

gorithm and then continuously select the current item when-
ever its value exceeds the threshold. Indeed, our threshold
increases when the selected portion increases. Refer to
Algorithm 1 for a formal definition.

The choice of function g is optimized based on the analysis
of our algorithm. For the purpose of a clearer presentation,
we first present the explicit formula of g and prove a math-
ematical fact of it, which is essential to our competitive
analysis.

Lemma 3.1. There exists a non-decresing function g(-) that

Y € [1, Al Og-l(v) g(x)dx =T - v, where T = ﬁ.
Proof. Let
1 x €[0,T)
= 1
9(@) {A”’ ce*~t e[l 1] M

It is straightforward to verify g(-) is a continuous non-
decreasing function because g(I') = Al - eI'~! = 1. Then,
we have that g*(v) € [T, 1] for v € [1, A], to conclude the

lemma, it suffices to show that [ g(z)dz =T - g(2*) for
allz* € [I',1]:

/g(w)dac:F—F/ A" dr
0 r

:F+/I E(IHA+1)I71d$
r

I N ¢

. T g(x*).

O

Theorem 3.1. Algorithm I with the function g chosen in
Egn()isT = ﬁ-competitive.

Proof. Let v* € [1, A] be the optimal value. Suppose the
maximum item arrives as the n-th item. Let x; be the se-
lected portion of our algorithm after the arrival of the i-th
item for all ¢ € [n]. We have that 1) z; is non-decreasing,
and 2) if x; > x,;_1, the value of the i-th item equals g(x;).
Hence, our gain from the i-th item equals (x; —x;—1)- g(x;).
Moreover, we have that z,, > g'(v*), as otherwise we
would continue selecting the n-th item. Therefore,

ALG = Z(xz —xi—1) - g(z;) > /OI" g(x)dx

gt (v*)
> / g(z)de =T -v*,
0

where the last equation follows from Lemma 3.1. This
concludes the competitive ratio of our algorithm. O
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Integral Algorithm. Next, we give a natural online round-
ing of the above fractional algorithm.

1. Draw a number x uniformly at random from [0, 1].

2. Set a threshold g(z) and select the first item whose
value is at least the threshold.

Theorem 3.2. The randomized integral algorithm with the
function g chosen in Eqn (1) is ' = ﬁ-competitive.

Proof. Let v* € [1, A] be the optimal value. Observe that
the algorithm ends up with accepting an item if and only if
the random threshold g(x) is at most v*. Let v(x) be the
value of the selected item when the threshold is chosen to
be g(z) for z € [0, g™ (v*)]. Then, we have

g (@) g (@)
E[ALG] = / v(x)dr > / g(x)dx =T - v*,

0 0

where the inequality follows from the definition of our
threshold-based algorithm and the last equation follows
from Lemma 3.1. O

Op.ti.mality. . F%nally, we prove that the F = ﬁ.com-
petitive ratio is tight for all online (randomized) algorithms.
Indeed, we prove a stronger statement that no fractional
algorithm can have better competitive ratio.

Theorem 3.3. For any A > 1, no fractional algorithm can
achieve a competitive ratio better than ﬁ.

Proof. Fix arbitrary n, let € = %. Let there be n items,
where the value of the i-th itemis v; = 1+ (i — 1) - .
Consider the following family of instances. In all cases, the
items arrive from the smallest weight to the largest. How-
ever, there are n possible stopping times, that the instance
stops right after the arrival of the i-th item, for each i € [n].
Fix an arbitrary fractional algorithm. Let x; be the selected
portion of the algorithm after the arrival of the ¢-th item. Let
I" be the competitive ratio of the algorithm. It must satisfy
that the algorithm is I'-competitive for all the n instances
defined above. Therefore, I' is bounded by the objective of
the following linear program.

max: I,
i
subject to: Z(:vj —xj1)v; > Ty vy,
j=1
O=2o<2; < <x, < 1.

Vi € [n];

We then solve the above optimization problem. Multiplying

(vi — %) to the first family of constraints and summing
i i+1

them up, we have

i (,011 - ,1 ) i(%‘ —xj1) v

i=1 =

1
n
1 1
Zrn : ( - ) " Ui
im1 \Vi o Uitl

where we use v,,41 to denote infinity for notation simplicity.
Rearranging the left hand side and the right hand side of the
equation gives that

n—1 n 1 1
LHS = 2, + Y- vj.z<vi_ | )
j:

v
i—j 1+1
n ( 1 1 )
—v. E -
Jj+1 -
i—j+1 (Y U1+1
=z, <15
n v v n—1 ¢
i+1
RHS =) ———— =3 +1
i—1 Vitl im1 Vitl

A1
”i°>°/ “dv+1=InA+1.
1 U

Observe that I' is at most the optimal solution I'}; of the
above linear program for all n. When n goes to infinity, I'};
tends to ﬁ’ that concludes the proof. O

4. Single Item: Random Arrivals

In this section, we study the secretary problem with pre-
diction. The total number of items n is known upfront by
the algorithm. Again, with out loss of generality, assume
the prediction interval is [1, A] and the optimal value is in
[1, A]. Within this section, we assume there is a time hori-
zon from 0 to 1 and the arriving time ¢; of each item ¢ is
drawn independently and uniformly from [0, 1]. Moreover,
we are aware of the current time ¢ when an item arrives.
This model is equivalent to the random arrival assumption
by the following folklore reduction. We first draw n inde-
pendent numbers uniformly from [0, 1]. Then, when the i-th
item arrives, let the current time be the ¢-th largest number
among the random numbers.

Recall that without the prediction (i.e., A = o), the opti-
mal competitive algorithm for the classical secretary prob-
lem is to reject all items before time % and accept the first
best-so-far item afterwards!. With a prediction in hand, an
immediate improvement over this algorithm is to add an ex-
tra condition for accepting items: accept an item only if its
value is at least 1. After all, we are guaranteed the existence

This is equivalent to the algorithm that rejects the first
Bin(n, é) items and accept the first best-so-far item afterwards.
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of an item with value at least 1. The modified algorithm
achieves an improved competitive ratio that depends on the
accuracy A. On the other hand, the algorithm does not fully
exploit the prediction as we never accept items before time
%. Consider the case when an item with value A shows up
at the beginning. Any reasonable algorithm should accept it
since we know there is no better item.

Based on the above two observations, our algorithm is de-
signed to incorporate them in a smoother way. Consider the
following time-dependent threshold algorithm:

Time-dependent Threshold Algorithm. Fix a non-
increasing function h : [0,1] — [1,A]. When an item
arrives at time t;, the algorithm accept it if it is the best-
so-far and its value is at least the time-dependent threshold
h(tl) I.e, Vi > max;<; vj and Vi > h(tz)

The algorithm described above belongs to this family of
algorithms and can be characterized by the function h(t) =
Afort < L and h(t) = 1fort > L. Next, we present a
general analysis for all time-dependent threshold algorithms
and do the optimization of function h afterwards.

4.1. Analysis

For any non-increasing function A, let k! (v) to be the in-
verse function of h, i.e.

-1 — . < .
h(v) tg(gg]{h(t)_v}

Let v* be the maximum value among all items. We prove
two lower bounds of algorithm’s selected value in the fol-
lowing lemma:

Lemma 4.1. Let i be item with the largest value v*, and j
be largest one released before t;.

1. Iftl > h-l(U
v*.

*Yand t; < h''(v*), the algorithm gets

2. Ift; > h'(v*) and t; > h'l(v
at least h(t;).

*), the algorithm gets

Proof. In the case when t; > h''(v*) and t; < h''(v*),
we claim that no item can be accepted before time i1 (v*).
Because v* is the max value among all items and the time-
requirement function is non-increasing, all items arrive be-
fore ™1 (v*) do not have large enough value to be accepted.
Then, all items arrive in [h!(v*),#;) can not be accepted
because these items are not larger than v;. Finally, since
item ¢ satisfies both conditions of our algorithm, we select
it and get v*.

In the case when t; > h'l(v
can be accepted before h™ (v
we have two possible cases:

*)and t; < h't(v*), no item
*) for the same reason. Then,
1) the algorithm accepts an

item before or at ¢;, 2) the algorithm does not accept any
item before or at ¢;. In the first case, because of the time-
dependent threshold, the algorithm gets at least A(¢;). In
the second case, since all items arriving between (tj,ti)
cannot be the best-so-far, the algorithm rejects them all.
Consequently, our algorithm selects item ¢ and gets v* >
h(t;). O

Equipped with the above lemma, we are ready to prove
the competitive ratio of any time-dependent threshold algo-
rithm.

Lemma 4.2. Time-dependent threshold algorithm with func-
tion h has competitive ratio

1
I'=inf 1
v*g[ll,A] { n(h'l(v*)

)b (")

I 1

+— In—-h(x)dz ;.
v h-l(v*) €T

Proof. Let i be item with the largest value v*

largest one released before ¢;. For any ¢ € [h!(v*),

probability

, and j be
1], with

Pr[t; < bl (') |t =] =

t; is smaller than h™! (v*) and the algorithm gets v* by the
first statement of Lemma 4.1. For any t; = ' € [h™}(v*), t],
the algorithm gets at least h(¢;) by the second statement of
Lemma 4.1. Combining them together, we have that

Y h(ty
+/ (J)dtj dt;
hl(v*) tz

E[ALG]

L (e
Rt (v*) t;
1
n (h T ) h
! 1
+/ / —dt; | di;
h 1(1) ¢, bi
=In (
1
+ In . -h(t;)dt;.
Rl (v*) 7

By definition, I' is the worst ratio among all choices of
v* € [1, Al], which completes the proof. O

Y

—_

D‘
,_.
v
D‘
AN
—~
<
*
<
*

4.2. Optimization

In this subsection, we give a numerical method to optimize
the choice of the time-requirement function h that maximize
the competitive ratio. General speaking, we restrict h to be
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a step function with N pieces, and prove that the minimum
value of I must be achieved at the N — 1 discontinuous
points or at A. Hence, we can aform a non-linear optimiza-
tion problem with O(N) variables and constraints to char-
acterize the competitive ratio I' and solve it by computer.We
leave the formal definition and proofs in the appendix file in
the Supplementary Material and only list results here.

Numerical Experiments. We solve the optimization on
a standard PC with the KNITRO solver. We compare the
result of competitive ratios for different accuracies A of the
N-step threshold algorithm to the algorithm in adversary
setting (Refer to Alg. 1). See the following table for the
competitive ratios for various values of N and A.

N=2 N=3 N=10 | N=20 | N=100 | Alg. 1
A=1 1 1 1 1 1 1
A=1.5 | 0.6832 | 0.7394 | 0.7718 | 0.7758 | 0.7786 | 0.7115
A=3 0.4820 | 0.5486 | 0.6152 | 0.6241 | 0.6304 | 0.4765
A=10 | 0.3962 | 0.4340 | 0.5028 | 0.5153 | 0.5242 | 0.3027
A=100 | 0.3705 | 0.3808 | 0.4248 | 0.4380 | 0.4482 | 0.1784

Table 1. Competitive ratios of /N-step functions for different accu-
racies A.

Observe that the threshold algorithm achieves competitive
ratio at least 1/e for all A since the optimal 1/e-competitive
algorithm can be characterized by a 2-step function accord-
ing to previous discussions. On the other hand, the competi-
tive raito of Alg 1 approaches 0 when A goes to infinity. See
Figure 1a for this observation. When A goes to infinity, the
competitive ratio of our algorithm converges to 1/e, but the
convergence speed is relatively slow. Focusing on small A,
the threshold algorithm achieves significant improvement on
the competitive ratio over % = 0.367 for sufficiently large
N, and it performs strictly better than Alg 1 when N > 3.
See Figure 1b for this observation.

Finally, we briefly discuss the optimized time-requirement
function h, which should be approached when N grows to
infinity. By our experiment, we observe that when the pre-
diction accuracy is small, the optimized time-requirement
function is close to linear. When the accuracy grows, the
time-requirement function consists of two pieces, where the
first piece is concave and the second piece is convex. In
Figure 2, we plot three concrete results, for fixed N = 100,
with respect to three different accuracies A = 3, 10, 100.

5. Online Edge-weighted Bipartite Matching
with Predictions

In this section, we extend our results to the online edge-
weighted bipartite matching setting with predictions. We
focus on the setting with adversarial arrival order. As ob-
served by (Antoniadis et al., 2020b), when the prediction

(a) Long: A € [1,100]. (b) Short: A € [1,10].

Figure 1. The competitive ratios of Alg 1 and the N-step threshold
algorithm as functions of A.

S : ~ S~

() A =3. (b) A = 10. (c) A = 100.
Figure 2. The optimized 100-step time-requirement function h for

A = 3,10, 100.

is exact (i.e. A = 1), the edge-weighted problem is de-
generated to the vertex-weighted case. We first design a
fractional algorithm that generalizes the water-filling algo-
rithm from the vertex-weighted online bipartite matching
setting. Then, we provide a Ranking-like rounding of the
fractional algorithm that preserves the competitive ratio.

Fractional algorithm. Consider the following economic
interpretation of our algorithm. Fix a non-decreasing func-
tion g : [0,1] — [0, A]. For each offline vertex v, let x,,
be its matched portion. At any time, set the price of vertex
v to be p,g(x,). Upon the arrival of an online vertex u, u
could pay the price of v in order to match v and to receive
the edge weight w,,, as a reward. u would then continu-
ously matches to the neighbor that offers the largest utility,
i.e. Wyy — Pug(Ty), until u is fully matched or none of its
neighbors offers positive utility. Refer to Algorithm 2 for
a formal definition. We use variables r,, /7., to keep track
of the revenue/utility of offline/online vertices respectively.
Note that these variable are only for the analysis.

Theorem 5.1. There exists a function g so that Algorithm 2

1+In(1—y)

is T-competitive, where T' = (' (A) and £(y) = e~ v

Proof. Let M* be the optimal matching. Fix an arbitrary
pair (v,u) € M*, where v € L and u € R. According
to the setting, we have wy, € [py, A - p,]. Consider the
moment right after «’s arrival and let z, be the matched
portion of v. Then we have 7, = fox“ pog(x)de. Iz, < 1
and p,g(x) < Wy, we must have that v is fully matched
(i.e. =, = 1) after its arrival, as otherwise, u would continue
matching with v. Furthermore, we know that r,, > wy, —
pug(2y), since the prices of all offline vertices only increase
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Algorithm 2 Online edge-weighted bipartite matching with
prediction (fractional)

1: Foreachwv € L, letz, = 0,7, = 0. {z,, 7, denote v’s
matched portion and revenue }
2: Upon the arrival of an online vertex u:
3 Letx, = 0,7, = 0. {x,,r, denote u’s matched
portion and utility }
4:  Let N(u) be the set of neighbors of v.
: While Ty, < 1
MaXye N (u):z,<1 {Wuy — pug(xy)} > 0do
Letv* = argmMaxye N (u):az, <1 {wuv - pvg(xv)}
u matches with v* for a small fraction dz.
Increase x,, and x, by dzx.
Increase 7, by pyg(z,)dx and 7, by (wy, —
Pug(y))da.

and

LR

during the process.

To sum up, the total utility of v is at least fow” pug(x)dz,
and the total untility of w is at least wy, —p,g(z,) if 2, < 1.
Note that r,, > 0. Considering whether x,, = 1 or x,, < 1,
we have

1
/0 Pug(y)dy,

Tu+7Ty = min
Ty

Pug(x)dx + max(wyy — pug(zy),0)
)

Finally, we conclude the proof with the mathematical fact
below:

0

Lemma 5.1. There exists a non-decresing function g that
kuv S [pv; A pv},

1 Ty
/ pvg(y)dyv / p,l,g(x)da:
0 0

max(wuv - pvg(mv)a 0)

min Z r. Wy -

141n(1-T)
T .

where T = (~1(C) and {(T) = e

Therefore, by the definition of r, we have

ALG=D "r+Y m> > (ru+m)

u€ER veEL (u,v)eM™
> Y T-w,=TI-OPT.
(u,v)eM*

O

We leave the mathematical calculation of proving
Lemma 5.1 in the appendix file in the Supplementary Mate-
rial.

Remark 5.1. When A = 1, the function g can be simplified
as g(x) = e~ and our algorithm becomes the 1 — 1/e-
competitive optimal algorithm of the online vertex-weighted
bipartite matching problem by (Aggarwal et al., 2011; De-
vanur et al., 2013). When A grows, our competitive ratio
quickly converges to the optimal competitive ratio of the
single item setting from Section 3. In other words, when the
predictions are inaccurate (i.e., A\ is large), the difficulty of
the problem caused by the matching structure is negligible.
See Figure 3 for this observation.

Figure 3. The competitive ratio

Ranking-like Rounding. Next, we give a lossless ran-
domized rounding of the fractional Algorithm 2. Roughly
speaking, the fractional algorithm continuously increases

‘the price of each offline vertex according to its matched

portion, while the integral algorithm sets a fixed random-
ized price at the beginning. This is a natural generalization
of the classical Ranking algorithm (Karp et al., 1990) for
the online vertex-weighted bipartite matching problem. In
particular, we use the same non-decreasing function g(x) as
previously:

ew—(l—Fh‘A) , < 1—Tln A,
g(z) = (z—1)/T @
Ae , x>1-TInA,

1+in(l—y)

where I' = (1 (A) and #(y) = e~ v . Then, we draw a
rank y,, independently for each offline vertex v uniformly
from [0, 1], and set v’s price as p, g(y, ). Consider at the time
when an online vertex u chooses v and matches e = (u, v),
the total reward that create should be w.. As the price
required, the reward w,. should be enough to cover the price
pug(yy) as v’s utility r,. As a result, u’s utility r,, should
be equal to the remaining reward w, — p,g(y,). Assume
u is rational, when u comes, it should always choose the
unmatched neighbor who can maximize its utility w, —
Pvg(yy). See Algorithm 3 for a formalized version of the
integral matching algorithm.

Theorem 5.2. Algorithm 3 with g defined above in Eqn (4)
is I'-competitive.

The analysis is similar to the analysis of Ranking by (Karp
et al., 1990). Thus, we can have that the same gain as that in
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Algorithm 3 Online edge-weighted bipartite matching with
prediction (integral)

1: For each v € B, draw y,, uniformly and independently
from [0, 1]. { y, denotes v’s rank}

2: When an online vertex v is reached:

3. Let N(u) be the set of unmatched neighbors of v.

4 Ifmax, g, {Wuw — Pog(ys) } > 0do

5: Let v* = argmax, ¢ () {wuw — Pog(yo) }-

6 u matches with v*.

7 Ty :pvg(yv)vru = Wyw 7pvg<yv)~

Eqn 2. For completeness, we include a proof in the appendix
file in the Supplementary Material.

6. Conclusion and Future Directions

In this work, we study several online selection problems
under the constraint adversary model. The principle of our
model is to design competitive algorithms when the pre-
diction is within a reasonable range. Our framework fits
in the theme of beyond worst-case algorithm design. First,
the constrained adversary model allows us to study online
problems that do not admit non-trivial solutions in the worst-
case scenario. Our results show that we can achieve constant
competitive ratios with any constant prediction accuracy in
the secretary and edge-weighted bipartite matching problem
with adversarial arrival. Observe that without the predic-
tions, both problems have unbounded competitive ratios.

Moreover, by studying structured/constrained adversary, we
are able to design algorithms with better competitive ratios,
compared to the corresponding unconstrained setting. Our
results show that we can strictly improve the classical tight
competitive ratio 1/e in the secretary problem, for any fixed
prediction accuracy. Obtaining tight competitive ratio for
any fixed accuracy A remains an interesting open question.

Finally, the constrained adversary model is naturally applica-
ble to other online problems. We briefly discuss a few inter-
esting directions to explore in the future. 1) Combining the
random arrival model with the online edge-weighted bipar-
tite matching problem studied in this paper, what would be
a natural extension of the algorithm of Huang et al. (Huang
et al., 2019b)? 2) The online makespan minimization prob-
lem is another well-studied online problem. Constant com-
petitive ratio is achieved in the worst-case scenario. Assume
that we are given the prediction of the optimal makespan
in advance, can we achieve an improved competitive ratio
against a constrained adversary?
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